

جامعة تشرين

كلية الهندسة المدنية

قسم هندسة وإدارة التشييد

تأثير معاملات الخلطة البيتونية على أداء الملدن

The effect of concrete formulation parameters on the performance of plasticizers'

رسالة علمية أعدت لنيل درجة الماجستير في الهندسة المدنية

اختصاص هندسة وإدارة التشبيد

إعداد المهندسة

غنوة الياس نقولا

بإشراف

د.م.زكائي طريفي

د.م.علي خيربك

العام الدراسي

2013-2012

قُدّمت هذه الرسالة استكمالاً لمتطلبات نيل درجة الماجستير في هندسة و إدارة التشييد من كلية الهندسة المدنية في جامعة تشرين

This thesis has been submitted as a partial fulfillment of the requirement for the degree of master of sciences in Engineering and Construction Management at the Faculty of Civil Engineering, Tishreen University.

تصريح

أصر ح بأن هذا البحث " تأثير معاملات الخلطة البيتونية على أداء الملدنات " لم يسبق أن قُبل للحصول على شهادة، و لا هو مُقدّم حاليّاً للحصول على شهادة أخرى. اسم المُرشَحة

المهندسة المدنية غنوة الياس نقولا...

تاريخ: 25/ 2013/11

DECLERATION

This is to declare that, this work " The effect of concrete formulation parameters on the performance of plasticizers" has not been being submitted concurrently for any other degree.

Candidate name ENG.Ghinwa Nicola

Date: 25/11/2013

نوقشت هذه الرسالة بتاريخ 11/25/ 2013 وأجيزت. لجنة الحكم:

الأستاذ المساعد الدكتور

د.عماد فاضل

الأستاذ الدكتور

تكنولوجيا وتتظيم الإنشاءات

قسم هندسة وإدارة التشييد

كلية الهندسة المدنية

جامعة تشرين

مواد البناء

قسم هندسة وإدارة التشييد كلية الهندسة المدنية

جامعة البعث

الأستاذ المساعد الدكتور

د.على خيربك

مواد البناء

قسم هندسة وإدارة التشييد كلية الهندسة المدنية

جامعة تشرين

جامعة تشرين كلية الآداب والعلوم الإنسانية قسم اللغة العربية

السيد الدكتور عميد كلية المرين

عملا بقرار مجلس قسم اللغة العربية رقم / / التاريخ ي / / ١٠١٣ المتضمن مدققًا لغويا لرسالة الماجستير لمؤلفها الطالب غنوة نُعتر لا وهي بعنوان (مَ شَرِ مَعا ملاح الخلفة المبتوشية على أواء الملداح)

وتم تصويب الرسالة وتدقيقها بعد المناقشة النهانية ، كما تم الالتزام بملاحظات المدقق اللغوي أصولا

وتفضلوا بقبول الاحترام

اسم المدقق وتوقيعه مير رزعبا س

عميد كلية الأداب والعلوم الإنسانية

رنيس قسم اللاة العربية الدكتور عادان أحمد

كلمة شكر

ACKMOWLEDGMENT

أود أن أتقدم بالشكر و الامتنان إلى وزارة التعليم العالي، و إلى جامعة تشرين، كلية الهندسة المدنية، لاحتضانها لي و لعملي، و أخص بالشكر قسم هندسة و إدارة التشييد لدعمه و تأييده الدائم لي، و أتقدم بجزيل الشكر و التقدير العظيم لمد يد العون الكريمة و المساعدة في الأبحاث الخاصة بهذا البحث إلى كل من السيد الدكتور علي خيربك و السيد الدكتور زكائي طريفي لجهودهما الحثيثة التي قدماها في العمل على هذا المشروع.

الإهداء

DEDICATION

إلى وطني سوريا...

إلى مثالي الأعلى في المحبة و العطاء...أبي

إلى القلب الذي فاض حباً و حناناً فغمرني...أمي

إلى من يشبهون الشمس بدفئها ... فادي و لانا و نور

إلى كل من أحببتهم و أحبوني....

شهادة

نشهد بان هذا العمل الموصوف في هذه الرسالة " تأثير معاملات الخلطة البيتونية على أداء الملدن"."
هو نتيجة بحث علمي قامت به المرشحة المهندسة غنوة نقولا بإشراف الدكتور على خير بك (الأستاذ
المساعد في كلية الهندسة المدنية بجامعة تشرين، اللاذقية، سورية) و الدكتور زكائي طريفي (الأستاذ
المساعد في كلية الهندسة المدنية بجامعة تشرين، اللاذقية، سورية)، و إنّ أي مرجع ورد في هذه الرسالة
موثّق في النص.

باشراف

نمرشحة.

زکائی طریقی

علي خير بك

0

تاريخ: 25 /11/2013

CERTIFICATION

It is hereby certified that, the work described in this thesis "The effect of concrete formulation parameters on the act of plasticizers" is the results of Miss. Ghinwa Nicola own investigations under the supervision of Dr. .. Ali KHEIRBEK (Assistant Professor, Faculty of Civil Engineering, Tishreen University, Lattakia, SYRIA), and Dr Zakai TARIFI (Assistant Professor, Faculty of Civil Engineering, Tishreen University, Lattakia, SYRIA), and any reference of other researchers work has been duly acknowledged in the text.

Candidate

Supervisors

Ghinwa Nicola

Ali KHEIRBEK.

Zakai TARIFI

جدول المحتويات

TABLE OF CONTENENTS

الفهرس	<u> رقم الصفحة</u>
مقدمه	1
الفصل الأول: تطور صناعة الملدنات و تأثيرها على خصائص البيتو	، الطري و الصلب
1-1-مقدمة	7
2-1-الإضافات المساعدة	7
3-1-الغاية من استخدام الإضافات	
4-1-تصنيف و استخدامات الإضافات المساعدة	10
1-5-تطور تقنية الملدنات	12
6-1-آفاق جديدة في صناعة البيتون	13
7-1-تصنيف الملدنات	17
8-1-أشكال الملدنات	18
1-9-وظيفة الملدنات	18
10-1عيمياء الملدنات	19
1-10-1-الليغنوسولفونات	19
1-10-2-حوامض الهيدوكسي	20
1-10-3-بوليميرات الهيدروكسليت	21
11-1كيماء السويرملدنات	22
1-11-1-فورم الدهيد نفتالين سولفونيت	23
1-11-2-فورم الدهيد ميلامين سولفونيت	23
1-11-3-البولي اكريليت	23
12-1 إماهة الاسمنت	24
13-1-آلية عمل الملدنات	29
14-1-تأثير الملدنات على ميكانيزم الإماهة	30
1-14-1-التأثير الريولوجي	30
1-14-2-التأثيرات السطحيَّه الأولية	
1-14-3-التأثير على منتجات الإماهة	35
1-3-14-1-التاثير على منتجات الإماهة المنحلة	
-2-14-1-والتأثير على منتجات الإماهة الصلبة	36
15-1-تأثير الملدنات على خواص البيتون	
-1-15-1 تأثير الملدنات على خواص البيتون اللدن	
15-1-2-تأثير الملدنات على البيتون المتصلب	

1-16-تأثير السويرملدنات على خواص البيتون	
1-16-1-تأثير السوبرملدنات على خواص البيتون اللدن	
1-2-16-أثير السويرملدنات على البيتون المتصلب	
1-17-أسس معيارية لاختيار الملدنات والسوير ملدنات	
1-18-الدراسات السابقة	
1-18-1-دراسة الأثر الإيجابي للملدنات	
1-2-18-5-تأثير نظافة الرمل على فعالية الملدن	
1-18-3-تأثير نوع الإسمنت وتنوع الملدنات على المقاومة الميكانيكية و قابلية التشغيل للبيتون	
1-4-18-تأثير نشاط الإسمنت الكيميائي على صناعة البيتون عالي المقاومة	
1-18-5-طرق تقييم التلاؤم بين الإسمنت والملدن	
1-18-6مفهوم ريولوجيا البيتون	
1-7-18-1 تعريف جريان البيتون باستخدام المتغيرات الريولوجية	
1-8-18-قتية القياس للبيتون الطري	
1-19-بعض الاشتراطات العامة الخاصة باستخدام الملدنات	
الفصل الثاني: البرنامج التجريبي-توصيف المواد المستعملة	
2-1-مراحل الدراسة التجريبية	
2-2-الإسمنت	
2-2-1-تجربة تحديد صنف الإسمنت	
2-2-2- تجربة نعومة الإسمنت	
2-2-3-تجربة الوزن النوعي للإسمنت	
2-3-خواص المواد الحصوية المستعملة في البيتون	
2-4-التجارب المجراة على المواد الحصوية	
2-4-1-تجربة التحليل الحبي الميكانيكي بواسطة المناخل (بالطريقة الجافة)	
1-4-2 التحليل الحبي للبحص الخشن Dmax=37.5mm	
2-1-4-2 التحليل الحبي للبحص الخشن Dmax=25mm	
3-1-4-2 التحليل الحبي للبحص الخشن Dmax=19mm	
4-1-4-2 التحليل الحبي للبحص الناعم. Dmax= 12.5mm	••••••••
2-4-1-5-التحليل الحبي للرمل الخشن	
2-4-1-6-التحليل الحبي للرمل الناعم	
2-4-2-تحديد معامل انتظام الحصويات الخشنة	
2-4-2- تحديد معامل انتظام لعينة البحص الخشن الأولىDmax=37.5mm	
2-2-2-تحديد معامل انتظام لعينة البحص الخشن الثانيةDmax=37.5mm	
2-4-2-تحديد معامل انتظام لعينة البحص الخشن الثالثة Dmax=37.5mm	
2-4-2-4-تحديد معامل انتظام لعينة البحص الخشن الرابعة Dmax=37.5mm	
2-4-2-تحديد معامل انتظام لعينة البحص الخشن الخامسة Dmax=37.5mm	
2-4-3-تحديد معامل نعومة الرمل	

••••••	س انجلوس لتعيين الفاقد بالاهتراء للمواد الحصوية	2-4-4-تجربة لو
	معادل (المكافئ) الرملي	2-4-5-تجربة ال
	إس الوزن الحجمي (الظاهري والصلب) للمواد الحصوية الخشنة والناعمة	2-4-6-تجربة قي
	ضافات الكيميائية المستعملة في البيتون	2-5-خواص الإظ
	ء المستعمل في البيتون	2-6-خواص الما
	لطة البيتونية	2-7-تصميم الخا
	الخلطة البيتونية باستخدام طريقة درو غوريس	2-7-1تصميم
	م العجينة الرابطة	
	م الخلطة الحصوية	2-7-2-تصمي
+مزيج	لخلطة البيتونية رمل نبكي بمعامل نعومة (mf=1.5)	2-7-2-تصميم ا
	(Dmax=25mm) و بحص ناعم (Dmax=12.5mm)	n) بحص خشن
	لخلطة البيتونية مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2)	2-7-3-تصميم ا
	شن (Dmax=25mm) و بحص ناعم (Dmax=12.5mm)	+مزيج بحص ذ
	لخلطة البيتونية مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)	2-7-4-تصميم ا
	خشن (Dmax=25mm) و بحص ناعم (Dmax=12.5mm)	+ مزيج بحص ،
	لخلطة البيتونية مزيج رمل عدسي و نبكي بمعامل نعومة (mf=3)	2-7-5-تصميم ا
	خشن (Dmax=25mm) و بحص ناعم (Dmax=12.5mm)	+ مزيج بحص ،
	لخلطة البيتونية رمل عدسي بمعامل نعومة (mf=4)	2-7-6-تصميم ا
	شن (Dmax=25mm) و بحص ناعم (Dmax=12.5mm)	•
	لخلطة البيتونية بحص خشن (Dmax=37.5mm)	•
	دسي و نبكي بمعامل نعومة (mf=2.7)	
	لخلطة البيتونية بحص خشن (Dmax=25mm)	,
	دسي و نبكي بمعامل نعومة (mf=2.7)	•
	الخلطة البيتونية بحص خشن (Dmax=19mm)	
	سي و نبكي بمعامل نعومة (mf=2.7)	
	الخلطة البيتونية بحص ناعم (Dmax=12.5mm)	'
	دسي و نبكي بمعامل نعومة (mf=2.7)	
	الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm)	'
	Cu1=1.33 و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)	
	الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm)	'
	Cu2=1.62 و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)	,
	الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm)	'
	Cu3=1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)	'
	الخلطة البيتونية باستخدام بحص خشن بقط (Dmax=37.5mm)	•
	Cu4=2.57 و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)	•
	الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm)	'
	Cu=3.75 ه مزیح رمل عدست و نبکی بمعامل نعومهٔ (mf=2.7)	ه معامل انتظام

97	2-8-قابلية تشغيل البيتون
97	2-8-1 تجربة تعيين الهبوط بمخروط أبرامز للبيتون الإسمنتي
98	2-8-2-تجربة قياس قابلية تشغيل البيتون بجهاز المانيابيليمتر
	الفصل الثالث: نتائج الاختبارات ومناقشتها
102	3-1-تحديد معيار مناسب لتقييم أداء الملدن في الخلطات البيتونية المدروسة
	2-3-دراسة تأثير معامل النعومة للرمل mf على أداء الملدن في الخلطة البيتونية 105
	1-2-1 دراسة تأثير معامل نعومة الرمل 1.49 $ m mf_{1=}$ على أداء الملدن في الخلطة البيتونية الأولى
	2-2-2-دراسة تأثير معامل نعومة الرمل mf_2 2 على أداء الملدن في الخلطة البيتونية الثانية
	3-2-3-دراسة تأثير معامل نعومة الرمل 2.7_mf3 على أداء الملدن في الخلطة البيتونية الثانية
	4-2-3 دراسة تأثير معامل نعومة الرمل $\mathrm{mf}_{4=3}$ على أداء الملدن في الخلطة البيتونية الرابعة
	3-2-3 دراسة تأثير معامل نعومة الرمل $\mathrm{mf}_{5=}4$ على أداء الملدن في الخلطة البيتونية الخامسة
	3-2-6-تحليل نتائج تغير قيم معامل نعومة الرمل mf على أداء الملدن في الخلطة البيتونية
	3-3-دراسة تأثير المكافئ الرملي Es على أداء الملدن في الخلطة البيتونية
	3-3-1-دراسة تأثير المكافئ الرملي 45 $_{ m Es_1}$ على أداء الملدن في الخلطة البيتونية السادسة
	3-3-2-دراسة تأثير المكافئ الرملي $65_{=2}$ على أداء الملدن في الخلطة البيتونية السابعة \ldots
	3-3-3 دراسة تأثير المكافئ الرملي ${ m Es}_{3=}83$ على أداء الملدن في الخلطة البيتونية الثامنة
	3-3-4-دراسة تأثير المكافئ الرملي Es ₄₋ 95 على أداء الملدن في الخلطة البيتونية التاسعة
_	${ m Es}_{5-}$ دراسة تأثير المكافئ الرملي ${ m Es}_{5-}$ على أداء الملدن في الخلطة البيتونية العاشرة
	3-3-6-تحليل نتائج تأثير تغير المكافئ الرملي Es على أداء الملدن في الخلطة البيتونية
	3-4-دراسة تأثير القطر الأعظمي للحصويات Dmax على أداء الملدن في الخلطة البيتونية
122	3-4-1-دراسة تأثير القطر الأعظمي للحصويات Dmax ₁₌ 12.5mm على أداء الملدن
	في الخلطة البيتونية رقم /11/
123	3-4-4-دراسة تأثير القطر الأعظمي للحصويات Dmax ₂₌ 19mm على أداء الملدن في
	الخلطة البيتونية رقم /12/
124	3-4-3-دراسة تأثير القطر الأعظمي للحصويات Dmax ₃₌ 25mm على أداء الملدن في
	الخلطة البيتونية رقم /13/
125	4-4-4دراسة تأثير القطر الأعظمي للحصويات Dmax ₄₌ 37.5mm على أداء الملدن
	في الخلطة البيتونية رقم /14/
	3-4-5-تحليل نتائج تغير القطر الأعظمي للحصويات Dmax على أداء الملدن في الخلطة البيتونية
	3-5-دراسة تأثير انتظام الحصويات Cu على أداء الملدن في الخلطة البيتونية
129	$ m Cu_{1}$ 3دراسة تأثير معامل انتظام الحصويات $ m Cu_{1}$ 3.33 على أداء الملدن في الخلطة البيتونية رقم $ m 15/\ldots$
	${ m Cu}_2$ -1.62 على أداء الملدن في الخلطة البيتونية رقم ${ m Cu}_2$ -1.62 على أداء الملدن في الخلطة البيتونية رقم ${ m cu}_2$ -1.63
	0.5-3-دراسة تأثير معامل انتظام الحصويات 0.1 0.5 على أداء الملدن في الخلطة البيتونية رقم 0.5
	$^{-2.5-4}$ دراسة تأثير معامل انتظام الحصويات $^{-2.57}$ على أداء الملدن في الخلطة البيتونية رقم $^{-18}$
133	3-5-5-دراسة تأثير معامل انتظام الحصويات 3.75_£Cu على أداء الملدن في الخلطة البيتونية رقم /19/

134 .	3-5-6-تحليل نتائج تأثير تغير معامل انتظام الحصويات على أداء الملدن في الخلطة البيتونية
136	3-6-دراسة تأثير نعومة الإسمنت SSc على أداء الملدن في الخلطة البيتونية
137 .	$SSc_{1=}2200 { m cm}^2/{ m g}$ على أداء الملدن في الخلطة البيتونية رقم $SSc_{1=}2200 { m cm}^2/{ m g}$ على أداء الملدن في الخلطة البيتونية رقم
138 .	$SSc_2=2500~cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم $SSc_2=2500~cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم
139 .	$SSc_3=2800~cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم $SSc_3=2800~cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم
140 .	$3000~\mathrm{cm}^2/\mathrm{g}$ على أداء الملدن في الخلطة البيتونية رقم $23/\mathrm{s}$ على أداء الملدن في الخلطة البيتونية رقم $3000~\mathrm{cm}^2/\mathrm{g}$
141 .	3-6-5-تحليل نتائج تأثير تغير نعومة الإسمنت SSc على أداء الملدن في الخلطة البيتونية
143.	3-7-الاستنتاجات
144.	8-3-التوصيات المقترحة
145.	الملحق1:التجارب المجراة على المواد الحصوية و الإسمنت
159.	المراجع
162.	جدول الرموز والمختصرات
163 .	الملخص باللغة العربية
164	الملخص باللغة الإنكليزية.

فهرس الجداول LIST OF TABLES

الصفحة	العنوان	الجدول
8	الغاية من استخدام بعض إضافات البيتون	1-1
17	تصنيف الملدنات وفق المواصفات الأمريكية و البريطانية و الألمانية	2-1
33	نسب ادمصاص جزيئات الإسمنت لمادة ليغنوسولفونات الكالسيوم المضافة	3-1
45	تَأْثِيرِ نَظَافَةِ الرملِ على فَعَالِيةً الْمَلَدنِ	4-1
46	المواد الداخلة في تركيب أنواع الإسمنت ونسبها	5-1
49	التعاريف المختلفة لقابلية التشغيل المستخدمة عالميا	6-1
49	نتائج اختبارات عينات المونة الإسمونية على الضغط البسيط	1-2
59	نتائج التحليل الحبي لعينة البحص الخشن Dmax=37.5mm	2-2
60	نتائج التحليل الحبّى لعينة البحص الخشن Dmax=25mm	3-2
61	نتائج التحليل الحبي لعينة البحص الخشن Dmax=19mm	4-2
62	نتائج التحليل الحبي لعينة البحص الناعم Dmax= 12.5mm	5-2
63	نتائج التحليل الحبى لعينة الرمل الخشن	6-2
64	نتائج التحليل الحبي لعينة الرمل الناعم	7-2
66	نتائج التحليل الحبي لعينة البحص الخشن الأولى Dmax=37.5mm	8-2
67	نتائج التحليل الحبي لعينة البحص الخشن الثانية Dmax=37.5mm	9-2
68	نتائج التحليل الحبي لعينة البحص الخشن الثالثة Dmax=37.5mm	10-2
69	نتائج التحليل الحبي لعينة البحص الخشن الخامسة Dmax=37.5mm	11-2
72	تنائج تجربة المكافئ الرملي لعينة الرمل العدسي (مرقية)	12-2
72	تتائج تجربة المكافئ الرملي لعينة الرمل النبكي	13-2
80	قيم معامل الحصوياتG	14-2
81	$(\mathrm{L/m}^3)$ قيم نسبة الهواء المحتجز في البيتون	15-2
84	تصميم الخلطة البيتونية رقم/1/ المستخدمة في البحث	16-2
85	تصميم الخلطة البيتونية رقم /2/ المستخدمة في البحث	17-2
86	تصميمُ الخلطة البيتونية رقمُ /3/ المستخدمة فيّ البحث	18-2
87	تصميم الخلطة البيتونية رقم /4/ المستخدمة في البحث	19-2
88	تصميم الخلطة البيتونية رقم /5/ المستخدمة في البحث	20-2
89	تصميم الخلطة البيتونية رقم /6/ المستخدمة في البحث	21-2
90	تصميم الخلطة البيتونية رقم /7/ المستخدمة في البحث	22-2
91	تصميم الخلطة البيتونية رقم /8/ المستخدمة في البحث	23-2
92	تصميم الخلطة البيتونية رقم /9/ المستخدمة في البحث	24-2
93	تصميم الخلطة البيتونية رقم/10/ المستخدمة في البحث	25-2
94	تصميم الخلطة البيتونية رقم/11/ المستخدمة في البحث	26-2
95	تصميم الخلطة البيتونية رقم /12/ المستخدمة في البحث	27-2
96	تصميم الخلطة البيتونية رقم/13/ المستخدمة في البحث	28-2
98	تصنيف البيتون حسب قابلية التشغيل	29-2
105	تراكيب الخلطات البيتونية عند تغير قيم معامل النعومة للرمل المستخدم في البحث	1-3
106	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الأولي	2-3
107	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الثانية	3-3
108	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الثالثة	4-3
109	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الى ابعة	5-3
110	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الهامسة	6-3
113	النسب الوزنية للخلطة البيتونية الثالثة	7-3
113	قيم المكافئ الرملي للخلطات البيتونية	8-3
114	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية السادسة تأثير تغير نسبة المادن والمبدئ المرتب	9-3
115 116	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية السلعة تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الهامنةة	10-3 11-3
116 117	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الهسعة تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية التاسعة	11-3 12-3
117 118	تاثير تغير تسببه الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الهاشرة تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الهاشرة	12-3 13-3
118 121	تاثير تعير لسبة الملتل على الهبوط و رمن الجريان في الخلطات البينونية الهاسرة تراكيب الخلطات البيتونية مع تغير قيم القطر الأعظمي للحصويات المستخدمة في البحث	13-3 14-3
121	تراكيب الخلطات البيلوانية مع تعير فيم العظر الاططمي للخلطويات المستخدمة في البخت تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم/11/	14-3 15-3
144	للكور لكيور مسبه المندل حتى الهيوند و رس الجريان سمسه البيبولية رسم 111/	13-3

123	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم/12/	16-3
124	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم/13/	17-3
125	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم/14/	18-3
128	تراكيب الخلطات البيتونية مع تغير قيم معامل انتظام الحصويات المستخدمة في البحث.	19-3
129	تأثير تغير نسبة الملان على الهبوط و زمن الجريان للخلطة البيتونية رقم/15/.	20-3
130	تأثير تغير نسبة الملان على الهبوط و زمن الجريان للخلطة البيتونية رقم/16/.	21-3
131	تأثير تغير نسبة الملان على الهبوط و زمن الجريان للخلطة البيتونية رقم/17/.	22-3
132	تأثير تغير نسبة الملان على الهبوط و زمن الجريان للخلطة البيتونية رقم/18/.	23-3
133	تأثير تغير نسبة الملان على الهبوط و زمن الجريان للخلطة البيتونية رقم/19/.	24-3
136	قيم نعومة الإسمنت للخلطات البيتونية المستخدمة في البحث	25-3
137	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم/20/	26-3
138	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /21/	27-3
139	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /22/	28-3
140	تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم 23//	28-3
146	كتلة العينة المراد اختبارها وفق فتحات المناخل	1-4
150	التراكيب الحبية و عدد الكرات الفولانية و وزن العينة لتجربة لوس انجلوس	2-4
152	تصنیف الرمل حسب مواصفات مخبر الطرق و الحسور بداریس (فرنسا)	3-4

فهرس الأشكال

LIST OF FIGURES

الصفحة	العنوان	لشكل
12	مراحل تطور تقنية صناعة الملدنات عبر الزمن	1-1
<u>14</u>	Water Tower Place برج	2-1
14	منظر عام لبرج Two Union Square	3-1
15	مناظر عامة لجسر Normandie في فرنسا	4-1
16	جسر Shin-Kiba Ohashi في اليابان	5-1
18	وظيفة الملدنات في البيتونّ	6-1
20	الوحدة المتكررة من جزيئة الليغنوسولفونات	7-1
21	أنواع و تركيب الحموض الهيدوكسى كاربوكسيك المستخدمة كإضافات مخفضة للماء	8-1
22	الصيغ الكيميائية لبوليميرات الهيدروكسليت	9-1
22	الأصناف الكيميانية الأسوير ملدنات.	10-1
23	آلية صناعة SNF	11-1
23	آلية صناعة SMF	12-1
24	المنحنى الكالومترى الخاص بإماهة C_3S .	13-1
27	$\mathbf{C}_3 \overset{\circ}{\mathbf{A}}$ المنحنى الكالومتري الخاص بأماهة	14-1
29	آلية عمل الملدنات	15-1
30	موديل بنغام للمتحولات الريولوجية	16-1
31	تغير معدل القص و إجهاد القص للعجينة الإسمنتية عند النسب المختلفة لـw/c	17-1
31	تغير علاقة معدل القصُ و إجهاد القص للعجينة الإسمنتية الحاوية على الملدنات	18-1
32	تأثيرٌ نسب الإضافة المختلفةُ لنوعين من الملَّدنات على لزوجة العجينة الإسمنتية	19-1
32	تغير تأثير الملدنأت المختلفة على لزوجة العجينة الإسمنتية عند النسب المتغيرة لـw/c.	20-1
34	تخفيض لزوجة العجينة الإسمنتية عند تغير كمية المصاص الملدنات المختلفة من قبل جزيئات الإسمنت	21-1
34	تشتت جزيئات الإسمنت بفعل الملدنات: (a) قبل الإضافة، (b) بعد الإضافة	22-1
35	تأثير الملدنات على منتجات الأماهة	23-1
36	تأثير الملدنات على تطور الحرارة المنتشرة من الاسمنت	24-1
37	تأثير الملدنات على قابلية تشغيل البيتون	25-1
38	تَأْثِيرِ الملدنات على مقاومة البيتون	26-1
40	تأثير السوبرملدنات على قابلية تشغيل البيتون	27-1
41	قدرة ملدنات البولى أكريليت على الاحتفاظ بالهبوط لمدة أطول	28-1
42	تأثير السوبرملانات من نوع SMF على مقاومة البيتون	29-1
44	التأثير الإيجابي للملدن في رفع المقاومة لعينات متقاربة في القوام	30-1
45	المقاومة الوسطية للبيتون المحضر من كل نوع من الإسمنت مع الملانات الثلاثة، في أعمار مختلفة	31-1
47	تجربة الهبوط المعدلة مع الزمن	32-1
50	الريومتر متوازى الصفائح و الريومتر وحيد المحور	33-1
54	بعض نماذج أنواع الإسمنت في سوريا	1-2
55	بعض أدوات تجرية تحديد صنف الاسمنت	2-2
56	جهاز بلين لقياس السطح النوعي للإسمنت	3-2
57	إناء لوشاتليه لتعيين الوزن النوعي للإسمنت.	4-2
58	عينات الحصويات المستخدمة في البحث	5-2
59	منحني التحليل الحبي لعينة البحص Dmax=37.5mm	6-2
60	منحنى التحليل الحبي لعينة البحص Dmax=25mm	7-2
61	منحنى التحليل الحبي لعينة البحص Dmax=19mm	8-2
62	منحني التحليل الحبي لعينة البحص الناعم.Dmax= 12.5mm	9-2
63	مُنْحِني التحليل الحبي لعينة الرمل الخشن	10-2

64	منحني التحليل الحبي لعينة الرمل الناعم	11-2
66	منحني التحليل الحبي لتحديد معامل انتظام عينة البحص الأولي Dmax=37.5mm	12-2
67	منحني التحليل الحبي لتحديد معامل انتظام عينة البحص الثاتية Dmax=37.5mm	13-2
68	منحني التحليل الحبي لتحديد معامل انتظام عينة البحص الثالثة Dmax=37.5mm	14-2
69	منحني التحليل الحبي لتحديد معامل انتظام عينة البحص الخامسة Dmax=37.5mm	15-2
71	جهاز لوس انجلوس و العينة مع الكرات قبل وضعها فيه	16-2
72	بعض أدوات تجربة المكافىء الرملي	17-2
80	منحنيات حساب العيارC بدلالة الهبوط و النسبة C/W.	18-2
82	طريقة تقريبية لرسم المنحني المرجعي اعتماداً على منحنيات التحليل الحبي	19-2
83	الخط المرجعي الذي يحدد النسب المئوية للبحص الخشن و الناعم و الرمل الناعم للخلطة الأولى	20-2
85	الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة الثانية	21-2
86	الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة الثالثة	22-2
87	الخط المرجعيَّ الذيُّ يحدد النسب المئوية للبحص و الرمل للخلطة الرابعة	23-2
88	الخط المرجعيُّ الذيُّ يحدد النسب المئوية للبحص و الرمل للخلطة الخامسة.	24-2
89	الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم/6/	25-2
90	الخط المرجعيّ الذيّ يحدد النسب المئوية للبحص و الرمل للخلطة رقم/ً7/.	26-2
91	الخط المرجعًى الذَّي يحدد النسب المئوية للبحص و الرمل للخلطة رقَمُ8/	27-2
92	الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقمُ9/	28-2
93	الخط المرجعيّ الذيّ يحدد النسب المئوية للبحص و الرمل للخلطة رقمُ10/	29-2
94	الخط المرجعيّ الذيّ يحدد النسب المئوية للبحص و الرمل للخلطة رقّمُ11/	30-2
95	الخط المرجعيّ الذيّ يحدد النسب المئوية للبحص و الرمل للخلطة رقمُ12/	31-2
96	الخط المرجعيّ الذيّ يحدد النسب المئوية للبحص و الرمل للخلطة رقّم13/	32-2
98	شكل و أبعاد مخروط ابرامز	33-2
100	جهاز المانيابيليمتر لقياس زمن جريان الخلطة البيتونية الطرية	34-2
102	الشكل التفصيلي لمنحني الإشباع	1-3
106	تغير زمن الجريان للخلطّة الأولىّ بتغير نسبة الملدن	2-3
107	تغير زمن الجريان للخلطة الثانية بتغير نسبة الملدن	3-3
108	تغير زمن الجريان للخلطة الثالثة بتغير نسبة الملدن	4-3
109	تغير زمن الجريان للخلطة الرابعة بتغير نسبة الملدن	5-3
110	تغير زمن الجريان للخلطة الخامسة بتغير نسبة الملدن	6-3
111	مقارنة تأثير تغير معامل نعومة الرمل على أداء الملدن في الخلطة الطرية	7-3
111	تأثير نعومة الرمل mf على أداء الملدن	8-3
112	تفسير ظاهرة تغير تأثير معامل نعومة الرمل على أداء الملدن في الخلطة الطرية	9-3
114	تغير زمن الجريان للخلطة السادسة بتغير نسبة الملَّدن.	10-3
115	تغير زمن الجريان للخلطة السابعة بتغير نسبة الملدن	11-3
116	تغير زمن الجريان للخلطة الثامنة بتغير نسبة الملدن.	12-3
117	تغير زمن الجريان للخلطة التاسعة بتغير نسبة الملدن	13-3
118	تغير زمن الجريان للخلطة العاشرة بتغير نسبة الملدن	14-3
119	مقارنة تأثير تغير قيم المكافئ الرملي على أداء الملدن في الخلطة الطرية	15-3
119	تأثير المكافئ الرملي ES على أداء الملدن	16-3
122	تغير زمن الجريان للخلطة رقم/11/ بتغير نسبة الملدن	17-3
123	تغير زمن الجريان للخلطة رقم /12/ بتغير نسبة الملدن.	18-3
124	تغير زمن الجريان للخلطة رقم/13/ بتغير نسبة الملدن	19-3
125	تغير زمن الجريان للخلطة رقم/14/ بتغير نسبة الملدن	20-3
126	مقارنة تأثير تغير قيم القطر الأعظمي للحصويات على أداء الملدن في الخلطة البيتونية	21-3
126	تأثير الفَطر الأعظمي للحصويات Dmax على أداء المَلدن	22-3
127	تفسير ظاهرة تغير قيم القطر الأعظمي للحصويات على أداء الملدن في الخلطة الطرية	23-3
129	تغير زمن الجريان للخُلطة رقم/15/ بتغير نسبة الملدنَ	24-3
130	تغير زمن الجريان للخلطة رقم/16/ بتغير نسبة الملدن	25-3
131	تغير زمن الجريان للخلطة رقم/17/ بتغير نسبة الملدن	26-3
132	تغير زمن الجريان للخلطة رقم/18/ بتغير نسبة الملدن	27-3
133	تغير زمن الجريان للخلطة رقم/19/ بتغير نسبة الملدن	28-3

134	مقارنة تأثير تغير قيم معامل انتظام الحصويات على أداء الملدن في الخلطة البيتونية	29-3
134	تأثير انتظام معامل الحصويات Cu على أداء الملدن	30-3
137	تغير زمن الجريان للخلطة رقم/20/ بتغير نسبة الملدن	31-3
138	تغير زمن الجريان للخلطة رقم /21/ بتغير نسبة الملدن	32-3
139	تغير زمن الجريان للخلطة رقم /22/ بتغير نسبة الملدن	33-3
140	تغير زمن الجريان للخلطة رقم /23/ بتغير نسبة الملدن	34-3
141	مقارنة تأثير تغير قيم نعومة الإسمنت على أداء الملدن في الخلطة البيتونية	35-3
141	تأثير نعومة الإسمنت SSc على أداء الملدن	36-3
145	سلسلة المناخل النظامية	1-4

المقدمة

Introduction

يعرف البيتون بأنه حجر صنعي يشكل من خليط متجانس مكتنز بنسب محددة و مدروسة من مواد حصوية، إسمنت، ماء، مواد إضافية أخرى.

يعد البيتون مادة الإنشاء الأولى في عصرنا و يعود الفضل في ذلك إلى الإمكانيات التي يقدمها البيتون التي تميزه عن غيره من مواد البناء الأخرى كقابليته للصب و التقولب "الصب في المكان" و اقتصاديته و مقاومته العالية للعوامل الخارجية من قوى و رياح و مواد مخربة و غيرها من المؤثرات المختلفة.

يمر البيتون من لحظة إضافة الماء على الهيكل الحصوي و الإسمنت و حتى انتهاء عمره الافتراضي بالمراحل الثلاث التالية:

<u>Fresh Concrete (الطازج)</u>

أي البيتون المتشكل من لحظة إضافة الماء إلى مكونات الخلطة الجافة و حتى لحظة زمن الشك الابتدائي، و تمتاز هذه المرحلة بالقدرة على الخلط و النقل و الصب.

Green Concrete البيتون الأخضر 2

و هي المرحلة المتكونة في الفترة من بداية تجمد الاسمنت و حتى بداية تصلب الخرسانة، و في هذه المرحلة لايسمح للخلطة البيتونية بالخلط أو النقل و الصب لأنها تكون قد تجمدت كما أنها لا تقوى على تحمل أي نوع من الإجهادات.

Hardened Concrete البيتون المتصلب 3

و هي تبدأ بتصلب الخلطة البيتونية (أي بعد انتهاء فترة التجمد) و حتى نهاية عمرها الافتراضي و تمتاز هذه المرحلة بأنها بداية زيادة المقاومة الرئيسية للبيتون (المقاومة على الضغط البسيط) و قدرتها على مقاومة الأحمال بمرور الزمن.

تتوقف خواص البيتون على تركيب بنيته و الذي بدوره يتوقف على نوع المواد المكونة للخلطة البيتونية و كميتها و كذلك النسب فيما بينها و أيضاً مدى تجانس هذه المواد و توزيعها و كيفية تماسكها مع بعضها كما تتوقف خواص الخلطة أيضاً على الظروف التي يتم فيها تصلب البيتون.

تعتمد جودة البيتون الطري على بعض خواص الخلطة البيتونية و التي تجعلها قابلة للتشغيل و الصب و الدك بأقل جهد ممكن، و بصفة عامة فإن خواص البيتون و هو في حالته الطرية أو الصلبة يجب أن تحقق المواصفات و الشروط الخاصة لكل نوع من البيتون على حدى.

تُعرّف ريولوجيا البيتون بأنها الدراسة العلمية لوصف سلوك البيتون الطري حيث يمكن اعتباره كمائع شرط أن ينجز مقدار معين من الجريان مع بقائه متجانس التركيب باعتبار أن الريولوجيا هي تعبير علمي يدل على دراسة جريان و تشوه المادة و تستخدم في مجالات عديدة لوصف جريان السوائل و لكن في مجال البيتون تصف قابلية التشغيل و الضخ و الجريان.

الخواص الرئيسية للبيتون الطري:

1-قوام الخلطة البيتونية Consistency: و يعبر عن السيولة النسبية للبيتون و يرتبط بنسبة كمية ماء الخلط و كمية المواد الجافة في الخلطة البيتونية، و الغرض من تحديد القوام هو ضمان الحصول على خلطة بيتونية ذات سيولة تتناسب مع مختلف الأعمال الإنشائية، كما أنه من أهم و أبسط الخواص التي تساعد على تجانس البيتون و ضبط جودته و ذلك قبل الصب مباشرة.

2-قابلية التشغيل Workability: و هي خاصية البيتون الطري التي تبين سهولة صبه مع الحفاظ على التجانس و مقاومته للانفصال الحبيبي أثناء النقل و ملء القوالب.

3-الانفصال الحبيبي Segregation: و هو انفصال مكونات خليط البيتون الطري بحيث يصبح توزيع هذه المكونات غير منتظم و يوجد نوعان من الانفصال الحبيبي للبيتون الطري:

-انفصال الحبيبات الكبيرة من الحصويات نتيجة لكونها أكثر ترسباً.و هو ما يحصل في الخلطات الجافة جداً و خاصة ذات المحتوى الضعيف من الإسمنت.

-انفصال جزيئات الإسمنت و يحدث ذلك في الخلطات المائعة.

4-النزيف (النضح أو طفو الماء على السطح) Bleeding: و هو ظاهرة طفو الماء على سطح البيتون الطري المصبوب حديثاً بعد دمكه وتسويته .

و يمكن القول أن أهم العوامل التي تؤثر على ريولوجيا البيتون هي:

1-مكونات البيتون بما يحتويه من عناصر كيميائية و معدنية كماً و نوعاً (التدرج الحبي وشكل ونوع و محتوى الحصويات، محتوى الماء، عيار الاسمنت، نسبة الماء إلى الاسمنت، نسب و نوع الإضافات).

يبين الشكل أدناه مخططاً منهجياً لتأثير البارامترات المختلفة على الخصائص الريولوجية آنفة الذكر [40].

2-نوع الخلاط المستخدم و طاقته و آلية عمله و الذي يؤثر على توزع المواد ومعدل دخول الهواء.

3-تسلسل الخلط أي تسلسل إضافة المواد إلى الخلاط.

4-درجة الحرارة الوسط و المواد أثناء الخلط.

و لا بد من الإشارة إلى أن تحديد الخواص الريولوجية اللازمة لاستخدام البيتون في مجال ما يجب أن يأخذ بعين الاعتبار:

- طريقة إيصال البيتون إلى مكان الصب.
- طريقة الرص (رجاج يدوي، رجاج آلي، بدون رج)
 - طريقة الإنهاء و تسوية السطوح.

تتحدد هذه النقاط بشكل أوتوماتيكي في بعض الحالات عند تحديد استخدامات البيتون. ومثال ذلك المنشآت كثيفة التسليح و التي يكون من الصعب وصول الرجاج فيها إلى كافة الأماكن، مما يتطلب بيتون له خصائص ارتصاص ذاتي و بالتالي يفضل استخدام البيتون ذاتي التوضع الذي يختلف في تصميمه عن البيتون الكلاسيكي باختلاف نوع و نسب المواد الداخلة في تركيبه.

خضعت صناعة البيتون دوماً و عبر مراحل نموها إلى تطورات عديدة و بخاصة بعد ازدياد المتطلبات العمرانية و البيئية. فمن أقدم المواد في صناعة البيتون تلك المواد الصلبة الناتجة عن نواتج المقالع (مواد متكسرة من الحصويات و الرمل) بالإضافة إلى مخلفات المصانع و التي يمكن أن نشملها بنواتج الحرق مثل هباب السيليس Silica Fume و الرماد المتطاير FlyAsh و خبث الأفران العالية و غيرها من المخلفات الصناعية.

و مع الاتجاهات الحديثة لإنتاج بيتون بمواصفات خاصة تتعلق بالمقاومة العالية و زيادة في قابلية التشغيل كان لا بد من الاستفادة من تطور الصناعة الكيميائية و البتروكيميائية في إنتاج الإضافات الكيميائية و ذلك لتحسين مواصفات الخلطة البيتونية الطرية أو البيتون المتصلب، تلك الإضافات التي أصبح من المتعذر الاستغناء عنها بفعل الخواص المميزة بواسطتها التي تكسبها للبيتون.

تشكل الملدنات إحدى الإضافات المساعدة التي تستخدم في تحضير البيتون [1] و التي تضاف إليه بكميات قليلة، لذلك نجدها غالباً على شكل محاليل معلقة يختلف تركيزها من محلول لآخر، وتزداد فعاليتها أو تتقص وفقاً لمحتوى المادة الصلبة في المحلول.

و بالرغم من أن الإضافات المساعدة دخلت في مواد البناء منذ عصر الرومان، إلا أنه وبعد اكتشاف البيتون عام (1824) تم استخدامها بشكل علمي و عملي فقد تم إضافة الجبس سابقاً كمادة منظمة لسرعة التجمد، كما استخدم كلور الكالسيوم كمادة مسرعة للتصلب، و السكر كمادة مبطئة للتصلب وذلك في مطلع العشرينات.

و ابتداءً من عام 1935 بدأت الاكتشافات في مجال الإضافات تتطور معتمدة على تطور الصناعة الكيميائية و ما ينتج عن الصناعة من مخلفات. و الآن و منذ ثلاثة عقود يكاد لا يخلو نوع من البيتون من هذه الإضافات حتى أصبحت دفاتر الشروط في معظم المشاريع تقرض استخدام إضافات خاصة تحدد مسبقاً نوعها و مواصفاتها و الأثر المرجو منها على البيتون [2].

مبررات البحث:

The Need for Research

يعتبر هذا البحث من حيث الفكرة و المضمون حاجة ملحة في الوقت الحالي. إذ أصبح استخدام الملدنات ضرورة لا يمكن الاستغناء عنها في عالم البيتون و البناء. و خصوصاً إذا ما علمنا أنها دخلت بشكل خجول إلى مجال تصنيع البيتون في سوريا و استُخدمت دون إجراء دراسات مسبقة عن مدى ملاءمة الملدنات للبيتون المصبوب. لذلك كانت هذه الدراسة لتوضيح تأثير معاملات الخلطة البيتونية على أداء الملدنات بهدف الوصول إلى الاستخدام الأمثل والاقتصادي لها في سوريا. و هو ما سينعكس إيجاباً على جودة المنتج البيتوني.

أهداف البحث:

The Objectives of the Research

تسعى الدراسة إلى تحقيق مايلى:

1-تحديد تأثير بعض بارامترات الخلطة البيتونية على أداء الملدنات.

2-وضع نماذج رياضية تسمح باستنتاج تأثير معاملات الخلطة البيتونية المختلفة على أداء الملدن.

3-وضع توصيات من خلال نتائج التجارب تسمح بالاستخدام الأمثل و الاقتصادي للملدنات في البيتون.

تنظيم البحث:

The Contents

تم تقسيم هذا البحث إلى ثلاثة فصول على النحو التالى:

الفصل الأول: الدراسة المرجعية

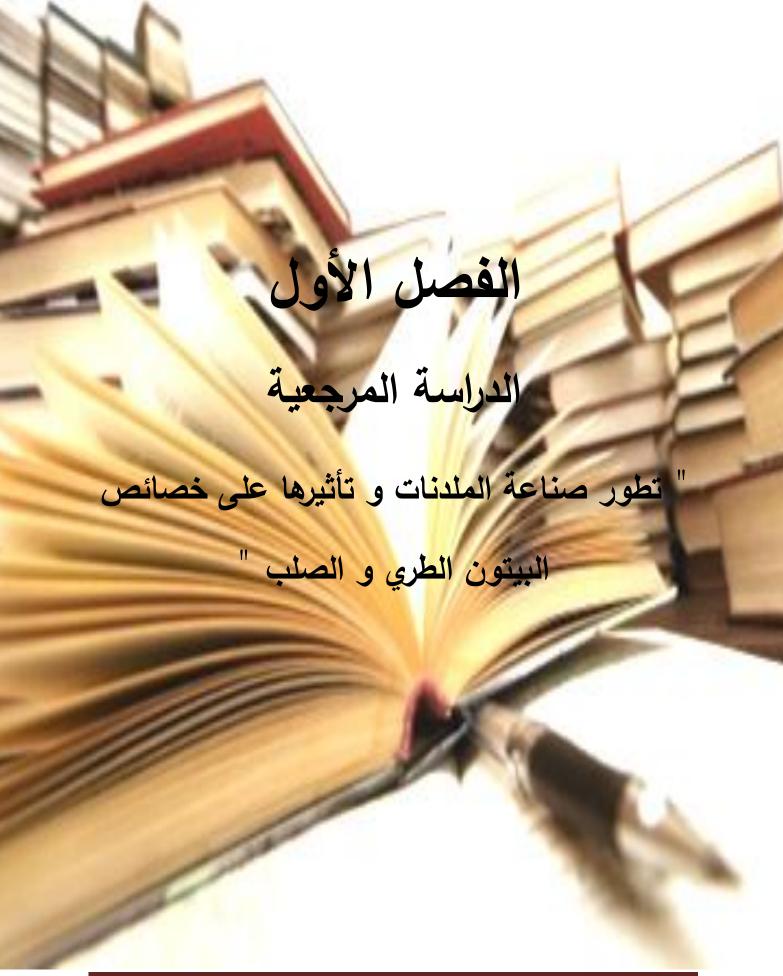
يقدم الفصل الأول الدراسة المرجعية و التي تطرقت إلى تعريف الملدنات و تصنيفها و تاريخ ظهورها و تصنيعها، و آلية عملها ريولوجياً و تأثيرها على ميكانيزم الإماهة و على منتجاتها المنحلة و الصلبة و مدى استخدامها في مجال البيتون.

كما أشار الفصل إلى بعض الأبحاث السابقة المدروسة حول تأثير استخدام الملدن في رفع مقاومة البيتون و تخفيض النسبة W/C، و دراسة تأثير نظافة الرمل على فعالية الملدن، و تتبع تأثير الإسمنت النشيط كيميائياً على صناعة البيتون عالى المقاومة، كما تم دراسة تأثير تغير أنواع الإسمنت و تتوع الملدنات على المقاومة الميكانيكية و قابلية التشغيل للبيتون، و بعض الدراسات حول طرق تقييم التلاؤم بين الإسمنت و الملدن و الإشارة أيضاً لمفهوم ريولوجيا البيتون و ذلك لأهميتها في بحثنا.

تم أيضاً التعريف بالأسسس المعيارية لاختيار الملدنات و بعض الاشتراطات العامة لطريقة استخدامها.

الفصل الثاني: البرنامج التجريبي

خصص الفصل لعرض الدراسة التجريبية التي قمنا بإنجازها في هذا البحث لمعاملات الخلطة البيتونية المراد دراسة تأثيرها على أداء الملدن، إذ تضمنت توصيفاً دقيقاً للإحضارات ثم عرض التجارب المخبرية اللازمة على مواد الخلطة و مراحل تصميم الخلطات البيتونية ذات المعاملات المختلفة و تحديد قابلية تشغيل البيتون للخلطات المصممة موضوع البحث.


الفصل الثالث: النتائج والتوصيات

و يضم هذا الفصل تحديد معيار مناسب لتقييم أداء الملدن في الخلطات البيتونية المدروسة ، ثم دراسة تأثير بعض بارامترات الخلطة البيتونية على فعالية الملدن في البيتون و استعراض النتائج التي تم التوصل إليها من خلال هذا البحث، بالإضافة إلى تقديم بعض التوصيات و المقترحات للأبحاث المستقبلية في هذا المجال.

كما عرضنا في النهاية الآفاق المستقبلية لهذا البحث في سوريا وإمكانية تطويره و رفده بأبحاث أخرى من شأنها إفساح المجال أمام الباحثين الراغبين في تطوير صناعة مواد البناء في القطر.

الملحق1: Appendix

المراجع: References

الفصل الأول

الدراسة المرجعية

(تطور صناعة الملدنات و تأثيرها على خصائص البيتون الطري و الصلب)

1-1-مقدمة Introduction

تزامن استخدام الملدنات مع تزايد الحاجة إلى تخفيض نسبة الماء المستخدمة في الخلطة البيتونية هذه النسبة التي تؤدي دوراً كبيراً في بنية البيتون المتصلب و تؤثر في الديمومة و المقاومة الميكانيكية، يعود السبب في ذلك إلى أن الإسمنت في الخلطة يأخذ حاجته من الماء أثناء تفاعل الإماهة و كذلك الحصويات ليتبخر القسم المتبقي منه مع الزمن مخلفاً المسامات في بنية البيتون التي لا تلبث أن تشكل خطراً عليه مع تقدم العمر حيث تصبح عرضة للعوامل الجوية و تضعف مقاومته و ديمومته على السواء.

و عليه، يسعى المصممون دوماً إلى الإقلال من كمية الماء الواجب إضافتها إلى البيتون بالاعتماد على الملدنات لتأمين قابلية التشغيل للبيتون الطري و اللازمة أثناء الصب، و ضمان الديمومة الجيدة. تشكل الملدنات إحدى الإضافات المساعدة التي تستخدم في تحضير البيتون [1]، و التي تُضاف إليه بكميات قليلة، لذلك نجدها غالباً على شكل محاليل معلقة يختلف تركيزها من محلول لآخر، وتزداد فعاليتها أو تتقص وفقاً لمحتوى المادة الصلبة (الملدنات) في المحلول.

نعرض فيما يلي بشكل مختصر أهم الإضافات المساعدة التي يمكن استخدامها في البيتون مع التأثير المنتظر لكل نوع منها.

1-2-الإضافات المساعدة The admixtures

تعرف الإضافات المساعدة بحسب ASTM-C-125 بأنها "مواد كيميائية غير الإسمنت و الحصويات و الماء" تضاف إلى الخلطات البيتونية أو المونة الإسمنتية مباشرة قبل الخلط أو خلال عملية الخلط بهدف إعطائها خواص معينة للخلطة و تحسين أداء عملها و هي بحالتها الطرية أو لتحسين إكساب صفات معينة للبيتون بعد التصلب"[2].

من المهم التنويه إلى أنه إذا استعملت هذه المواد وفق التعريف السابق فتدعى عندها: "المواد المضافة "Chemical admixtures" تمييزاً لها عن تلك التي تضاف إلى الإسمنت بغير هذا الهدف و منها المواد الشبيهة بالإسمنت من حيث المظهر و التي تدعى عندها: "المواد المضافة للاسمنت من حيث المظهر و التي تدعى عندها: "additives".

3-1-الغاية من استخدام الإضافات The uses of admixtures

تستعمل هذه الإضافات عادة لتعديل خواص البيتون أو المونة الإسمنتية و هي بحالتها الطرية أثناء تحضيرها وخلطها ونقلها وصبها و لتحسين مواصفات البيتون بعد التصلب.

يوضح الجدول (1-1) استخدامات بعض هذه الإضافات [40]:

نوجز فيما يلى الأثر الإيجابي لاستخدام هذه الإضافات في البيتون و المونة الإسمنتية:

- زيادة قابلية التشغيل دون زيادة نسبة الماء في الخلطة.
- تخفيض النسبة W/c مع المحافظة على قابلية التشغيل المناسبة للخلطة.
 - إطالة زمن بداية التجمد.
 - تأخير زمن بداية التجمد.
 - تحسين قابلية ضخ الخلطة البيتونية.
 - إنقاص أو تأخير انتشار الحرارة في بداية عملية التصلب.
 - زيادة المقاومة المبكرة الميكانيكية.
 - زيادة المقاومة الميكانيكية النهائية.
 - تحسين ديمومة البيتون.
 - زيادة قوى تلاحم البيتون بفولاذ التسليح.
 - إنقاص نفوذية البيتون للماء.
 - تثبيط التفاعلات المؤدية إلى تآكل فولاذ التسليح.
 - الخ.....

• الجدول (1-1) الغاية من استخدام بعض إضافات البيتون [40].

	أنواع الإضافات Admixtures Type					
Desired property الغاية المرجوة	Water reducer مخفضات الماء	Accelerators المسرعات	Retarder المؤخرات	Superplasticizer السوبر ملدنات	AEA مدخلات الهواء	Other special admixtures إضافات خاصة مختلفة
Setting and hardening التجمد و التصلب						
Accelerate rate of gain of early strength تسريع الحصول على المقاومة الإنتدائية	**	*		*		
Accelerate set تسریع التجمد		*				
Retard set تأخير التجمد			*			
Workability and other plastic properties قابلية التشغيل و بعض الخصائص البلاستيكية						
Increase workability without loss of strength زيادة قابلية التشغيل دون انخفاض المقاومة	*			*		
Increase frost resistance during setting زيادة مقاومة الصقيع خلال النجمد		*			*	
Reduce temperature rise تخفیض حرارة الانتشار	**		**	**		
Reduce bleeding تقلیل ظاهر ة النضح					*	*
Reduce segregation تقليل ظاهرة انفصال الحصويات					*	*
Improve pumpability تحسين الضخ	*			**	*	*
Hardened properties الخصائص الصلبة						
Increase final strength without increasing cement content or reducing workability زیادة المقاومة النهائیة دون زیادة محتوی الاسمنت أو تخفیض قابلیة التشغیل	*			*		
Improve durability and freeze_thaw resistance تحسين الديمومة ومقاومة التجمد و الذوبان	**			*	*	
Improve water resistance تحسن مقاومة المياه	*			*	**	*
Alter colour تغییر الألوان						*
Improve bond تحسين االتر ابط						*

^{*} Main application

^{**} Secondary application

4-1-تصنيف و استخدامات الإضافات المساعدة

The classification and utilization of admixtures

تصنف الإضافات المساعدة بحسب الأثر الذي تسببه إضافتها للبيتون.حيث تعطي المواصفات الأوربية التصنيف التالى لهذه الإضافات [2]:

Plasticizers Water_reducing الماء -1-4-1

و هي مركبات تثبت جزئياً على حبيبات الإسمنت بفعل قوى التجاذب بينها و بين هذه الحبيبات، و تعمل على تبعثر حبيبات الإسمنت في الخليط مما يساعد في تأمين اللدونة الكافية دون إضافة كمية زائدة من الماء[3].

يلخص تأثير هذه الإضافات بقدرتها على تخفيض كمية الماء بعدل (%5) للحصول على قابلية تشغيل مكافئة وبالتالي زيادة في المقاومة بمعدل (%1) و كانت الأنواع الأولى منها تستخرج من مخلفات الورق (الليغنوسيلفونات أو الكبريتات الخشبية) أما الآن فتستخدم لتحضيرها مواد صناعية أساسها المركبات البوليميرية و كبريتات الكالسيوم و الصوديوم و نأتي على تفاصيلها لاحقاً.

2-4-1 عالية الفعالية Superplacticizers high range reducing:

و هي مركبات لها نفس آلية عمل الملدنات و لكن بشكل أكبر تأثيراً يظهر ذلك بقدرة أكبر على تخفيض الماء للحصول على نفس قابلية التشغيل، إذ يمكن أن تخفض الماء بنسبة (%30-15) و تزيد المقاومة بنسبة (%30-20) ، أما تركيبها الكيميائي فهو من نوع صموغ الميلانين الكبريتية. أو كبريتات النفتالين أو كبريتات الفنيل [4].

تختلف هذه الإضافات عن الملدنات بقصر زمن تأثيرها الذي لا يتجاوز غالباً 35min، لذلك تستخدم معها مؤخرات التجمد في أغلب الأحيان.

تضاف الملدنات عالية الفعالية في المراحل الأخيرة من الخلط، و غالباً ما يكون ذلك في موقع الصب عند استخدام بيتون المجابل، إذ تزود الجبالات بخزان خاص للملدنات يسمح بإضافتها قبل استعمال البيتون.

تتم إضافة الملدنات عالية الفعالية إلى البيتون على مرحلتين[5]:

1-إضافة جزء منها عند خلط البيتون وقبل نقله في الجبالة.

2-إضافة الجزء المتبقى ضمن الجبالة و قبل الصب مباشرة.

:The water_retenders حاجزات الماء

و هي إضافات ناعمة تساعد على تخفيض ظاهرة طفو الماء إلى سطح البيتون الطري، و تستخدم لصناعة هذه الإضافات مركبات ميتيل السيليلوز المستخرج من الخشب، أما آلية العمل فتتلخص بازدياد

حجم جزئيات هذه الإضافات عند ملامستها للماء، مما يعمل على سد منافذ صعود الماء إلى سطح البيتون المصبوب.

: The air_entrainers مولدات الفقاعات الهوائية

و هي إضافات تعمل على حجز فقاعات ميكروية من الهواء بأقطار أقل من 100 ميكرون ضمن بنية البيتون، مما يستدعي التفريق بينها و بين الهواء المحتجز عند الخلط (air occlue) و الذي تتجاوز أقطار فقاعاته اله 1mm.

أما تركيب هذه الإضافات فهو عبارة عن صموغ صناعية أو أحماض دسمة أو كبريتات، تعمل الفقاعات الهوائية المتولدة بفعل هذه الإضافات على:

1-زيادة قابلية تشغيل البيتون و ذلك لعمل الفقاعات الميكروية كحبيبات شديدة النعومة تتحرك بحرية و مرونة ضمن البيتون الطري بأقل احتكاك ممكن؛

2-زيادة مقاومة البيتون لحلقات الصقيع و الذوبان عن طريق استيعاب الفقاعات لزيادة حجم الماء عند تجمده.

:The Accelerators المسرعات 5-4-1

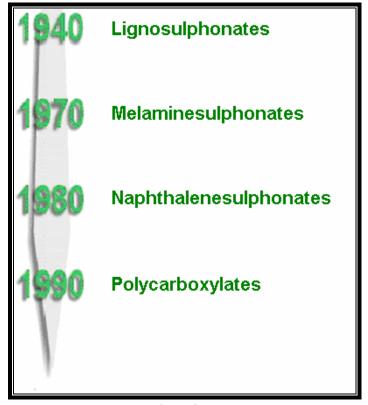
و هي إضافة قابلة للانحلال في الماء تعمل على تسريع تفاعلات الإماهة و تستخدم عادة عند الصب في الأوقات الباردة.نميز عادة بين نوعين من المسرعات:

مسرعات التجمد: المصنعة عادة من القلويات و كربونات و كبريتات الصوديوم و البوتاسيوم؛

مسرعات التصلب: المصنعة من أملاح الكلور و الكربونات و التي تستخدم عادة عند الحاجة لفك القالب بسرعة.

:The Retarders (المبطئات) 6-4-1

إضافات قابلة للانحلال في الماء ذات تأثير يشبه تأثير المسرعات و لكن بشكل عكسي عن طريق تأخير تفاعلات الإماهة مما يفيد في الصب في الأوقات الباردة و نقل البيتون لمسافات بعيدة و إعادة عملية الصب.


The waterproofing admixtures إضافات التكتيم-7-4-1

إضافات كيميائية تعمل على خفض خاصية الامتصاص الشعري للبيتون، و هي تصنع عادة من مركبات السيترات المنحلة التي تشكل عند ملامستها للكلس في الإسمنت بلورات من سيترات الكالسيوم غير المنحلة و التي تعمل على إغلاق الشبكة الشعرية في البيتون.

1-5-تطور تقنية الملدنات The evolution of superplasticizer technology

ارتبط تطور إنتاج الملدنات مع المتطلبات المتزايدة على استخدام أنواع مختلفة من البيتون غير التقليدي مثل البيتون مسبق الصنع، البيتون الجاهز، البيتون ذاتي التوضع، و أنواع أخرى لها تطبيقات إنشائية واسعة الانتشار على مستوى العالم.

يوضح الشكل (1-1) مراحل تطور تقنية صناعة الملدنات عبر الزمن [6] .

الشكل (1-1) تطور تقنية صناعة الملدنات عبر الزمن

كان تطور تقنية صناعة الملدنات وثيق الصلة بتخفيض النسبة .w/c عموماً نستطيع القول: إن الليغنوسولفونات والغلوكونات Lignos & Gluconates هي ملدنات مخفضات لمحتوى الماء بحدود -5 .Naphtaalenes-Melamines المدنات الميلامين و النفتالين و البولي كاربوكسيليت polycarboxylates and Viny1copolymers هذه المواد الجديدة و التي سميت فيما بعد السوبر مخفضات محتوى الماء بمستوى أعلى من 12%.

عند التفكير بما حدث في السابق نجد أن تطور الإضافات كان تدريجياً حيث أن الليغنوسيلفونات ليريجياً حيث أن الليغنوسيلفونات Oxycarboxyacids و أملاحه، التخدمت في التطبيقات التكنولوجية على البيتون مبشرة بولادة الملدنات في مطلع القرن العشرين.

و في العام 1939، وجد خبراء الإسمنت البورتلاندي في شيكاغو أن إضافة مادة الـ فينزول تري تانولامين Vinzol-trietanolamin كمادة مساعدة أثناء طحن الإسمنت لها دور فعال في خلق الفراغات الهوائية

المجهرية اللازمة لتحسين مقاومة الخلطة البيتونية المتعرضة لحلقات الصقيع و الذوبان. وصل هذا الاختراع أوربا في العام 1946 (تأخر وصوله بسبب الحرب العالمية الثانية) [7].

تشكل مادة فورم الدهيد-ميلامين السولفونيت السولفونيت condensates الأساسية للسوبرملدنات و التي يمكن اختصارها بالميلامين و التي ظهرت في السوق مابين 1960–1970 و استخدمت في صناعة البيتون مسبق الصنع بسبب خسارتهاالسريعة نسبياً للهبوط [8].

تشكل مادة فورم الدهيد – نفتالهن السولفونيت Laghtaalenes-formaldehyde المادة الأساسية الثانية لالسوبرملدنات و التي يمكن اختصارها بالنفتالين [8]، والتي ظهرت في السوق مابين 1970–1980. و باعتبار تأثيرها يدوم بشكل أطول من سابقتها فإنها تستخدم ليس فقط في صناعة البيتون مسبق الصنع، بل أيضاً في صناعة البيتون الجاهز على اعتبار أنها تؤخر إماهة الإسمنت و بذلك تسمح بنقل البيتون لمسافات طويلة [9].

تُعتبر مادة البولي كاربوكسيليت polycarboxylate آخر تطوير في تقنية السوبر ملدنات، كان الباحثون اليابانيون أول من بدأ بالبحث عليها في العام 1983. ركزت الأبحاث آنذاك على مقاومة البيتون علماً أن معايير البيتون المقاوم في الإنشاءات الهيكلية تقتضي إجراء رج بتواتر و اهتزاز دوري بعد الصب من قبل العمال المهرة و الذي أصبح عددهم يتناقص مما استدعى استخدام تلك المواد التي من شأنها تأمين اللدونة و الجريان اللازمين للخلطة البيتونية ذاتية التوضع [11].

6-1 آفاق جديدة في صناعة البيتون New opportunities in concrete industry

اعتمدت صناعة البيتون عالى الأداء HPC على استخدام السوبر ملدنات السابقة (SNF,SMF,PCE) كوسيط فعال لتخيفض النسبة w/c، و هو ما لاقى رواجاً كبيراً حول العالم. و على سبيل الذكر استخدم البيتون عالى المقاومة الخفيف في إنشاء القواعد البترولية و ذلك لتحسين استقرار القاعدة البترولية على ركائز جافة أثناء السحب.

تم أيضاً استخدام البيتون عالي المقاومة الخفيف في إنشاء الجسور و قد بنيت منشآت عديدة باستخدام البيتون عالي المقاومة الخفيف كما هي الحال في قاعدة العالم التي بنيت على البيتون عالي المقاومة الخفيف كما هي الحال في قاعدة Beaufort Sea I التي بنيت على ركائز جافة في اليابان ثم سحبت عبر المحيط الهادي لتوضع في بحر Beaufort .

و في عام 1991 بنيت في النرويج ستة جسور باستخدام البيتون عالى المقاومة الخفيف و مع أن كلفة المتر المكعب للبيتون عالى المقاومة هذا أعلى منها للبيتون عالى المقاومة العادي، إلا أنه و باستخدام هذا البيتون أمكن إنشاء جسور أكثر اقتصادية لأن الإنقاص الكبير لحمولتها الميتة قلل بشكل واضح التكلفة الإضافية الناجمة عن استيراد الحصويات الخفيفة.

و في شيكاغو استطاع مصمم Water Tower Place الموضح في الشكل (2-1) باستخدامه للبيتون عالى المقاومة تصغير مقاطع الأعمدة في الطوابق السفلى و بالتالي تقليل الحمل الميت للبرج على الأساسات و كذلك زيادة مساحة السكن .

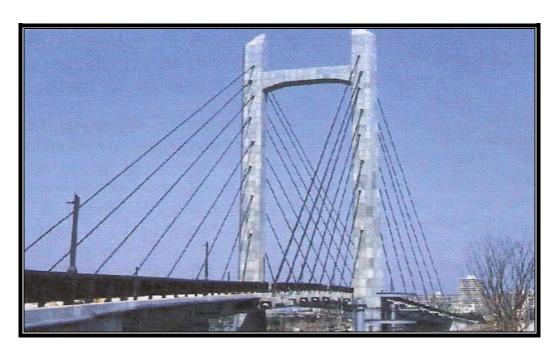
الشكل (2-1) برج Water Tower Place

و في عام 1988 تم بناء برج Two Union Square في سياتل بالولايات المتحدة ذي الـ 58 طابقاً الموضح في الشكل (1-3) و قد تطلب بناؤه و هيكلته تقنيات جديدة . .

و لرفع صلابة هذا البرج ذي الارتفاع 216m و تقليل الاهتزازات الناجمة عن الرياح أو عن الهزات الأرضية، ملئت الأتابيب الفولاذية ببيتون عالي المقاومة ذي معامل مرونة 50 معامل الأرضية، ملئت الأتابيب الفولاذية ببيتون عالي المقاومة على الضغط مقدارها 130 مع أن مرونة البيتون العادي، و قد تطلب ذلك استعمال بيتون بمقاومة على الضغط مقدارها 90 معافل المقاومة من وجهة النظر الإنشائية. و قد تم الحصول على هذه المقاومة العالية باستعمال إسمنت بورتلاندي من النوع I I منخفض القلوية، و نسبة w/c=0.22 و حصويات ملساء عالية المقاومة بقطر أعظمي 10 و رمل من نفس مصدر الحصويات و سوير ملدنات بنسبة لا تتجاوز 2.5 من وزن الإسمنت.

الشكل (3-1) منظر عام لبرج Two Union Square

و في العام 1993 بني جسر Normandie في فرنسا، و الذي يبلغ طوله الكلي 2141m و عرضه 21m و في العام 21m و النين للمشاة و الدراجات، تتألف الفتحة الوسطى للجسر من ثلاثة أقسام قسمين من البيتون المصبوب في المكان بطول 116m مستندة على ركائز مستندة بدورها على أعمدة فرعونية بشكل حرف y مقلوبة و بارتفاع 214m كما هو موضح في الشكل (1-4) وقسم ثالث مركزي بطول 624m في ببلاطات مسبقة الصنع . و قد تطلب بناء الجسر حوالي 624m من البيتون بمقاومة وسطية 80Mpa كان من المتعذر الحصول عليها لو لم يتم اكتشاف الملدنات و استخدامها في البيتون عالى المقاومة.


استخدم في صنع بيتون هذا الجسر رمل محلي بقطر mm (4–0) و حصويات مكسرة بقطر لا يتجاوز mm 20 سلاميني محسن و هباب السيليس بنسبة من الإسمنت مقدارها (8%). و قد تم ضخ البيتون (بصعوبة في كثير من الأحيان) لبناء القسم الشاقولي من الجسر، كما تم رج البيتون داخلياً و خارجياً.

الشكل (4-1) مناظر عامة لجسر Normandie في فرنسا

و لا بد من الإشارة إلى أنه اعتمد في صناعة البيتون مسبق الصب قبل ظهور الملدن الميلاميني على المعالجة البخارية لتأمين المقاومة المبكرة العالية، حيث يسرع البخار من عملية التصلب و لكنه قد يؤثر سلباً على بنية البيتون مخلفاً الشقوق التي تتقص من المقاومة النهائية للبيتون. بينما يخفض استخدام الميلامين بنسبة 1% النسبة 0.3 إلى 0.3 مؤمناً القوام اللدن للبيتون و المقاومة المطلوبة [9].

استخدمت السوير ملدنات عالية الأداء PCE في إنتاج البيتون ذاتي التوضع SCC لتأمين قابلية التشغيل الجيدة أثناء الصب و لمسافات طويلة دون الحاجة للرج، و بسبب جدوى استخدام هذا النوع من البيتون انتشر في اليابان بكثرة إذ استعمل في إنشاء جسر Shin-Kiba Ohashi و الذي يظهر في الشكل (1-5) أدناه:

الشكل (5-1) جسر Shin-Kiba Ohashi في اليابان

و منذ ذلك الحين تم استخدامه في بناء الكثير من الجسور و المنشآت الأخرى في اليابان. و في بحث أجري عام 1990 لإنتاج البيتون مسبق الإجهاد، تبين أن استخدام السوبر الملدنات العالية الفعالية High range water reducer) للإنشائية من هذا البيتون (الجسور -العوارض-البلاطات-الركائز ...الخ).

7-1 - تصنيف الملدنات The classification of plasticizers

1-7-1-تصنيف الملدنات حسب تركيبها الكيميائي:

يمكن تصنيف الملدنات حسب تركيبها الكيميائي إلى خمسة أنواع [40]:

1-ملدنات الميلامين SMF؛

2-ملدنات النفتالين SNF؛

3-ملدنات الليغنوسولفونات؛

4-ملدنات البولي إكريليت؛

5-ملدنات البولي كربوكسيليت PCE.

2-7-1-تصنيف الملدنات حسب تأثيرها على زمن التجمد وسرعة التفاعل وتخفيضها للنسبة W/C:

تصنف الملدنات بحسب ASTM_C.494 إلى مايلي:

1-الصنف A: مخفض لنسبة الماء إلى الإسمنت W/C (الملدنات)؛

2-الصنف D: مخفض لنسبة الماء و مؤخر للتصلب (السوبرالملدنات)؛

3-الصنف E: مخفض لنسبة الماء و مسرع للتصلب (السوبرالملدنات)؛

4-الصنف F: مخفض عالى الأداء لنسبة الماء (الملدنات عالية الأداء)؛

5-الصنف G: مخفض عالي الأداء لنسبة الماء و مؤخر للتصلب (الملدنات عالية الأداء).

الجدول (2-1) تصنيف الملدنات وفق المواصفات الأمريكية و البريطانية و الألمانية [40].

Type of admixture	UK	USA	Germany
Accelerating	BS 5075:part 1	ASTM C.494-C ASTM D98 (Calcuim chloride)	IB Type BE
Retarding	BS 5075:part 1	ASTM C.494-B	IB Type VZ
Normal water-reducing	BS 5075:part 1	ASTM C.494-A	IB Type BV
Accelerating water- reducing	BS 5075:part 1	ASTM C.494-E	IB Type BE
Retarding water-reducing	BS 5075:part 1	ASTM C.494-D	IB Type VZ
Air entraining	BS 5075:part 2	ASTM C.260 AASHTO M.154	IB Type LP
Superplasticizers	BS 5075:part 1	ASTM C.494-F&G	IB Type BV

BS: British Standards Institution

ASTM: American Society for Testing&Materials

AASHTO: American Association of State Highway Transportion Officials

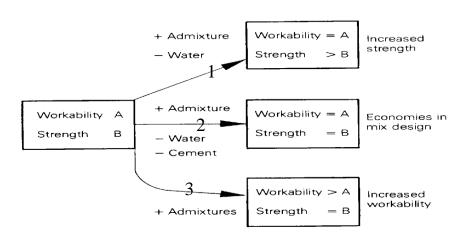
IB: Institut für Bautechnik

و من أجل مختلف أنواع الملدنات يجب التأكد من فعالية المادة المضافة خاصة في الحالات التالية: -عند استعمال الإضافة بوجود نوع معين من الإحضارات غير مستعمل سابقاً مع النوع نفسه من الإضافة (مثل الرمل الخالي من الطين والسيليس)؛

-عند استعمال الإضافة مع أنواع أخرى من الاسمنت؛

-عند إجراء عمليات الخلط و الصب في درجات الحرارة خارج المجال الموصى به من قبل الشركة المصنعة للمادة المضافة.

8-1-أشكال الملدنات The shapes of plasticizers


1-مادة صلبة على شكل بودرة قابلة للانحلال بالماء، لذلك تحل بالماء قبل الاستعمال و يجب اتباع توصيات الشركة المنتجة للحصول على النتائج المطلوبة .

2-مادة سائلة و هي الشكل الأكثر شيوعاً و ذلك لتقليل الضياعات من المادة كونها تستخدم بعيارات قليلة و لضمان توزعها بتجانس أفضل.

9-1 وظيفة الملدنات The Function of plasticizers

تقوم الملدنات بدور المخفض لنسبة الماء المطلوبة مع المحافظة على قابلية التشغيل للبيتون و هو في الحالة اللدنة دون التأثير على خواصه الأخرى، معتمدة على أن الخواص الميكانيكية للبيتون مرتبطة بمسامية نسيج الخلطة البيتونية فتساعدها على تأمين السيولة اللازمة أثناء الصب و ترفع المقاومة الميكانيكية بعد التصلب و تعطي البيتون ديمومة عالية، و بالتالي تؤمن فرص جديدة لاستخدام البيتون في مجالات إنشائية عديدة [40].

يوضح الشكل (1-6) أدناه وظيفة الملدنات ضمن مجالات ثلاث: (زيادة في المقاومة، اقتصادية في التصميم، زيادة في قابلية التشغيل) [40]:

الشكل (1-6) وظيفة الملدنات في البيتون

تتطلب الإماهة الكاملة للإسمنت البورتلاندي ما يقارب اله 20% من وزنه ماء، و أي ماء إضافي (-40 % 60% فوق هذه النسبة سيترك نسبة من المسامات الشعرية، لذلك يعد تحقيق حد أدنى من الماء الفائض باستعمال الإضافات الكيميائية المخفضة للماء محور مهم على صعيد التقنيات البيتونية.

تستطيع العديد من الإضافات الكيميائية تخفيض نسبة الماء لتأمين قابلية التشغيل الجيدة المطلوبة للخلطة البيتونية و هي في الحالة الطرية، حيث تعمل هذه الإضافات على منع الاندماج و تفريق جزيئات الإسمنت محررة الماء المحتجز بين جزيئاتها و بالتالي تتحسن سيولة العجينة الإسمنية، و هو ما سوف نفسره لاحقاً.

1-10-كيمياء الملدنات:

The chemistry of the water-reducing admixtures

بالرغم من تنوع الإضافات المتوفرة في السوق و المتواجدة بأصناف متعددة الفوائد (عوازل ماء-محسنات قابلية التشغيل.....الخ) إلا أننا يمكن أن نحصر المواد الكيماوية الأساسية الداخلة في تركيب الإضافات المخفضة للماء (الملدنات) بالليغنوسولفونات، الحمض هيدروكسي كاربوكسي و مركبات الهيدوكسليت.

1-10-1 الليغنوسولفونات 1-10-1

الليغين هي مادة مركبة نحصل عليها غالباً من حرق الخشب، و يتم الحصول على الليغنوسولفونات (أملاح الصوديوم والكالسيوم) من خلال العمليات التالية: تصنيع الورق المستخلص من لب الخشب، الكحول المتشكل كناتج ثانوي لخليط من المواد المعقدة ، عمليات تفسخ منتجات الليغين و السيللوز، منتجات سلفنة الليغين، و أخيراً السكر أو الكربوهيدرات المتنوعة و الحوامض الهيدروكسيلية و التي جاءت غالباً كنواتج عرضية للصناعات الزراعية و معالجة الأغذية.

تتتج عمليات الاختمار و الترطيب و التعديل اللاحقة على مركبات الليغنوسولفونات أصناف متفاوتة بالنقاء والتركيب معتمدة على عدة عوامل أهمها: التعديل القلوي، درجة الاختمار، نوع و عمر لب الخشب المستخدم [10].

يبين الشكل (1-7) التمثيل المحتمل للليغنوسولفونات كبوليمير متضمن للوحدة المتكررة من جزيئة الليغنوسولفونات:

الشكل (1-1) الوحدة المتكررة من جزيئة الليغنوسولفونات

نستطيع استبدال جزيء الليغنوسولفونات بوحدة فيني بروبين [phenyl propane] المتضمنة كاربوكسي - carboxyl 1 و مجموعة الحموض الكبريتية sulfonic acid groups [13–15].

تؤدي الليغنوسولفونات النقية (أملاح الصوديوم والكالسيوم بنسبة سكر تتراوح بين %30-1) المخفضة للماء دوراً مؤخراً لإماهة الإسمنت، يمكن أن يتم ذلك لفترة زمنية أطول تسمح بالنقل و الصب عن طريق زيادة مركبات السكر الداخلة في تركيبها، يمكن أيضاً تعديل دورها لتصبح مسرعة للإماهة عن طريق إضافة بعض المواد مثل كلوريد الكالسيوم، النترات و التري تانولامين triethanolamine بنسبة (%15) من محتوى الليغنوسولفونات [19].

تعد الليغنوسولفونات المشوبة كعامل إدخال الهواء إلى البيتون و لكن بنسبة صغيرة لتعزيز ديمومته و تماسكه، بينما مدخلات الهواء العادية أمثال تري بيوتي فوسفيت tributylphosphate لها قدرة كبيرة على إدخال الهواء حتى عند استخدامها بكميات قليلة لاتتجاوز (1%) من الليغنوسولفونات [18].

Hydroxycarboxylic acids كاربوكسيليك كاربوكسيليك 2-10-1

و هي مواد كيميائية عضوية تمتلك جزيئاتها مجموعتين هما الهيدروكسي _ hydroxyl1 والكاربوكسي _ carboxyl والكاربوكسي و لمحالجة الكيميائية و الحيوية للمواد الغذائية الخام، عموماً تضم أملاح الصوديوم و أحياناً أملاح الأمونيوم أو التري تانولامين. تمتلك أملاح الصوديوم قابلية ذوبان كبيرة و بالتالي نقاط تجمد قليلة و عليه نستطيع اعتبارها مادة مساهمة بتجمد البيتون بالظروف الباردة. تعد أملاح الغلوكنيك gluconic والهيبوتونيك heptonic أشهر الأملاح الرائجة تجارياً. هي تمتلك عادة دور مخفض للماء و دور مخفض للماء و معنص للماء و قد تمزج كمية قليلة من هذه الأملاح مع كلوريد الكالسيوم لتشكل الإضافات

المخفضة للماء و المسرعة للإماهة، و يمكن إضافة المواد المدخلة للهواء على هذه الأملاح لتشكيل الإضافات المخفضة للماء و المدخلة للهواء [10,20,21,22,26].

يوضح الشكل(1-8) تركيب الحموض الهيدوكسي كاربوكسيك المستخدمة كإضافات مخفضة للماء.

a		Citric acid		Tartaric acid		Mucic acid	
		[23, 25]		[23, 25]		[10, 14, 25]	
Functionality OH gro COOF Molecular weight	oups I groups	1 3 192		2 2 150		4 2 210	
Formula		CH₂C	ООН	СООН		соон	
	HO-	0-С-СООН		н-	С-ОН	н-	-С-он
	110	-С-СООН		но-сн		но-с-н	
		 CH₂COOH			СООН		-С-ОН
		C112C0011		COOH		н-с-он	
							СООН
		nic acid , 21, 26]	Salicyli [24]	c acid	Heptoni [22]	c acid	Malic acid [25]
Functionality OH gro	oups 5 I groups 1		1		6		1 2
Molecular weight	196		138		230		134
Formula	СООН	C	соон		ĊООН	но-	ÇН—СООН
	н-с-он		OH	н-	Ċ-ОН		CH₂COOH
	но−с –н			но-	Ċ-н		
	н-с-он	~		н	ç–он		
	н-с-он			но-	Ċ-н		
	ĊH₂OH	Į.		но-	Ċ-Н		
					Сн₂он		
	سن تامان ادّاء ن					,	

الشكل (1-8) أنواع و تركيب الحموض الهيدوكسي_ كاربوكسيك المستخدمة كإضافات مخفضة للماء.

3-10-1 الهيدروكسليت Hydroxylated polymers

مركبات الهيدروكسليت الكيميائية مشتقة طبيعياً بفعل تفاعل كيميائي يدعى البولي سكاريد polysaccharides مثل نشا الذرة من خلال الحلمهة الجزئية لتشكيل مركبات بوزن جزئي أقل وتتضمن من (%3-2) وحدة حموض سكرية glycoside_units و بالتالي على خلاف التفاعل الكيميائي للغلوكوز المسمى المونوسكاريد monosaccharide glucose.

تبقى هذه المركبات مستقرة عند إضافتها للإسمنت الحاوي على الإضافات المخفضة للماء حيث نقوم بدورها المهم في تأخير تصلب البيتون، هذا الدور الذي يمكن تعديله إلى مسرع عن طريق إضافة كلوريد الكالسيوم أو تري تانولامين [12] و الشكل التالي (9-1) يوضح الصيغ الكيميائية لبوليميرات الهيدروكسليت.

الشكل (1-9) الصيغ الكيميائية لبوليميرات الهيدر وكسليت.

11-1 كيمياء السويرملدنات The chemistry of superplasticizers

تعد السوبر ملدنات صنف متطور من الملدنات العادية و التي تتشكل من مواد لها القدرة العالية على تخفيض الماء مع المحافظة على قابلية تشغيل عالية دون آثار جانبية غير مرغوب بها، و باختصار الأنواع الرئيسية الثلاثة من المواد الأولية المستخدمة في صناعة السوبر ملدنات هي SNF و SMF و Polyacrylates و لقد وجدت هذه المواد رواجاً على مستوى العالم.

يصور الشكل(1-10) أدناه كافة أنواع السوبر ملدنات:

$$\begin{array}{c} R \\ \hline \\ CH_2 \hline$$

الشكل (1-10) الأصناف الكيميائية السوير ملدنات.

1-11-1-فورم الدهيد نفتالين سولفونيت Sulfonated naphthalene formaldehyde

تتتج هذه المادة بتفاعل النفتالين مع الكبريتات so₃ الناتجة عن عملية السلفنة تحت الظروف المؤدية لتشكل السولفونيت الذي يتفاعل لاحقاً مع الفور الدهيد HCHO وصولاً للبلمرة و تعديل حمض الكبريت بهيدروكسيد الصوديوم [17-16] و الشكل التالي (1-11) يوضح التفاعلات الجارية لصناعة SNF.

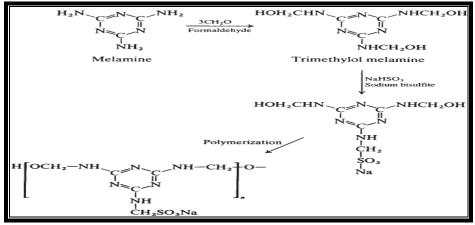
تروج هذه المادة SNF تجارياً عبر محاليل تتفاوت فيها محتوى المادة الصلبة المنحلة من (%5-25) من وزن المحلول، علما أن نسبة المادة المضافة الصلبة المطلوبة لإنتاج البيتون الذاتي التوضع بحدود (%3-1) من وزن الاسمنت.

$$\begin{array}{c}
 + H_2SO_4 \\
 + H_2SO_4
\end{array}$$

$$\begin{array}{c}
 + H_2SO_4 \\
 - CH_2O
\end{array}$$

$$\begin{array}{c}
 + CH_2O
\end{array}$$

$$\begin{array}{c}
 + CH_2O
\end{array}$$


$$\begin{array}{c}
 + CH_2O
\end{array}$$

$$\begin{array}{c}
 + CH_2O
\end{array}$$

الشكل(1-11) آلية صناعة SNF

2-11-1 فورم الدهيد ميلامين سولفونيت Sulfonated melamine formaldehyde

تتتج هذه المادة بتفاعل الميلامين مع الفور الدهيد HCHO مشكلاً التري تانولامين الذي لايلبث أن يتفاعل مع بيسولفيت الصوديوم NaHSo₃ وصولاً للبلمرة المؤدية إلى تشكيل SMF و يوضح الشكل (1-12) آلية التفاعل [27-28]

الشكل(1-12) آلية صناعة SMF

11-1-البولى اكريليت Polyacrylates

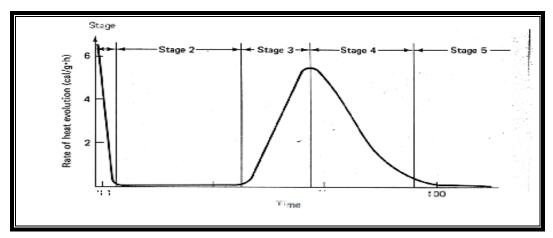
تُصنع الأنواع المختلفة من بوليميرات البولي أكريليت من بلمرة جزيئات الاكريليت acrylate الوحيدة الحد مشكلة بوليمرات على شكل صف أو عشوائية و ذلك بحسب درجة إعادة بلمرة الجزيئات الوحيدة (monomers) و الشكل السابق (1-10) يظهر صيغة البولى اكريليت.

12-1-إماهة الاسمنت Hydration of Cement

يدعى التفاعل بين الاسمنت و الماء بتفاعل إماهة الاسمنت، و يعتبر بغاية الأهمية لأنه المسؤول عن عملية C_3S, C_2S ,) التصلب فيما بعد، يشمل هذا التفاعل عدة تفاعلات و هي تفاعل مينرالات الإسمنت الاربعة $(C_3S, C_2S, C_2S, C_3S, C_3$

1-12-1-إماهة سيليكات الكالسيوم الثلاثية Hydration of C₃S

التفاعل الكيميائي التالي يتم عند تفاعل C3S مع الماء:


$$2C_3S + 6H \rightarrow C_3S_2H_3 + 3CH$$
Tri-calcium water C-S-H calcium hydroxide

صفات نواتج التفاعل:

C-S-H -1 سيليكات الكالسيوم المائية منتج الإماهة الرئيسي، وهي مادة هلامية بللورية بشكل فقير تشكل جزيئات صغيرة جداً في المادة الصمغية باعتبارها مادة رابطة علماً أن مكوناتها غير ثابتة كيميائياً.

C+S-H ماءات الكالسيوم منتج الإماهة الثاني لا تشبه C-S-H لأنها مادة بللورية غير رابطة مع مكونات ثابتة.

يمر النفاعل بين C_3S و الماء بعدة مراحل تميزه عن غيره من النفاعلات الأخرى موضحة من خلال المنحني الكالومتري التالي (دراسة سرعة النفاعل من خلال قياس معدل انتشار الحرارة في واحدة الزمن):

الشكل (13-1) المنحنى الكالومتري (دراسة سرعة التفاعل من خلال قياس معدل انتشار الحرارة في واحدة الزمن) الخاص بإماهة 33.

1-1-12-1 الأولى السريع Stage-1) Initial hydration):

يتم في الدقائق الأولى بعد مزج C_3S مع الماء حيث يكون النقاعل سريعاً جداً مترافقاً مع زيادة سريعة لدرجة الحرارة لا يلبث ان يتباطأ بسرعة حيث يكاد يتوقف خلال دقائق قليلة و تدوم هذه الفترة نحو 15 دقيقة. تعتبر كمية C_3S المتفاعلة قليلة و هي بحدود (2% - 1) من كمية (3S) الكلية و هي الطبقة السطحية الخارجية من حبيبات (3S).

:(Stage-2)Induction period مرحلة الخمول -2-1-12-1

و هي فترة تدوم لعدة ساعات تتوقف خلالها تفاعلات الإماهة و هذا السبب يفسر بقاء البيتون لعدة ساعات في المرحلة اللدنة (البلاستيكية).

تعد كمية C₃S المتفاعلة في هذه المرحلة لا تتجاوز (2%) و المادة الرابطة المتشكلة صغيرة جداً لا تكفي لبدء تماسك و تصلب العجينة الإسمنتية و هذا هام جداً من الناحية العملية لأن بقاء الخلطة الإسمنتية بشكلها العجيني الطري مدة أكثر من ساعة يمكن العمال من الانتهاء من عمليات الخلط الجيد مع الرمل و الحصويات و الماء لتشكيل العجينة ثم نقلها و صبها في القوالب و رجها حتى تملأ كل الفجوات في القالب قبل أن تبدأ بالتصلب.

و لو أن مرحلة الخمول لم تكن موجودة لاختلف أسلوب العمل في البناء جذرياً.

3-1-12-1 مرحلة التسارع Stage-3) Acceleration period

يتسارع التفاعل من جديد مع تطور في نسبة الحرارة المنتشرة التي تصل إلى حدها الأعظمي خلال اله (-4) ساعات نلاحظ تشكل كميات متزايدة من المادة الرابطة (-3-H) فتبدأ العجينة بالتماسك في بداية هذه المرحلة أي تبدأ عملية بداية التجمد للإسمنت (intial setting) ثم يزداد التماسك مع استمرار التفاعل إلى أن يصل إلى قيمة أخرى تستطيع العجينة مقاومة مقدار محدد من الضغط و تدعى هذه النقطة نهاية التجمد (Final setting) و تكون عادة بعد عدة ساعات من المزج، أي فترة تعطي بداية و نهاية التجمد و تصلب مبكر للعجينة.

-4-1-12-1 مرحلة التباطؤ Stage-4) Decceleration period-

و هي المرحلة التي تتناقص فيها سرعة التفاعل مترافق مع انخفاض بنسبة الحرارة المنتشرة إلى أن تصل إلى نسية ثابتة منخفضة جداً بعد عدة أيام، حيث يتشكل فيها المزيد من المادة الرابطة C-S-H و تزداد المقاومة مع مرور الزمن و في نهاية هذه المرحلة يكون الجزء الأكبر من C_3S قد تفاعل مع الماء.

-5-1-12-1 انتهاء التفاعل <u>Final period</u> مرحلة انتهاء التفاعل

و هي مرحلة إتمام التفاعل و تعد امتداداً لمرحلة التباطؤ لكنها تستغرق وقتاً أطول بكثير يصل إلى عدة أشهر يستمر فيه التفاعل ببطء شديد و يتفاعل ما تبقى من C_3S مع الماء.

Hydration of C_2S إماهة سيليكات الكالسيوم الثنائية -2-12-1

تتم إماهة C_2S بطريقة مماثلة لـ C_3S وفق التفاعل الكيميائي التالى:

 $2C_2S$ + 4H \rightarrow $C_3S_2H_3$ + CH

dicalcium water C-S-H calcium silicate hydroxide

صفات نواتج التفاعل:

 C_3S -نواتج الإماهة هي ذاتها نواتج إماهة الـ C_3S

 C_3S مركب أقل نشاط من C_3S أبطأ بكثير من إماهة الـ C_3S و يعود السبب بذلك لأن C_2S مركب أقل نشاط من C_3S و هذا سبب كون C_2S لا يساهم بالمقاومة الابتدائية؛

 C_2S المنتاداً إلى قلة كمية الحرارة المنتشرة عند تفاعل C_2S ، يصعب قياس الحرارة المنخفضة بشكل تجريبي و كذلك الأمر بالنسبة للمنحني الكالومتري الخاص برسم إماهة C_2S بالكاد يطبع المراحل. ملاحظة: يعد C_2S المادة الثانية في الأهمية و المسؤولة عن إكساب الهجينة الإسمنتية الصلابة.

1-2-1-ماهة الومينات الكالسيوم الثلاثية Hydration of C₃A

إن إماهة الومينات الكالسيوم الثلاثية A C_3A هي أسرع مكونات الإسمنت تفاعلاً مع الماء و أكثرها نشراً للحرارة.

• يتم تفاعل C₃A مع الماء في حال كان الاسمنت لايحوي الجبس على الشكل التالي:

 C_3A + 21H \rightarrow C_4AH_{13} + C_2AH_8

نواتج التفاعل السابق $(C_4AH_{13}+C_2AH_8)$ غير مستقرة لا تلبث أن تتفاعل مع بعضها وفق التفاعل التالى:

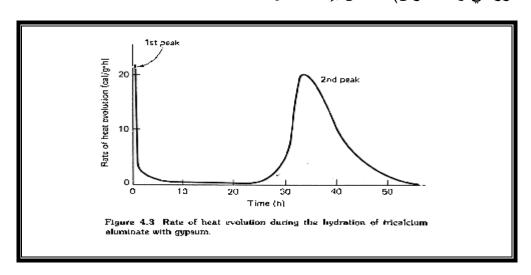
 C_4AH_{13} + C_2AH_8 \rightarrow $2C_3AH_6$ + 9H

هذه التفاعلات سريعة و ناشرة للحرارة بشكل كبير و هذا غير مرغوب فيه من الناحية العملية لسببين:

الأول: تحول العجينة الاسمنية إلى حالة من الجمود خلال دقائق بعد المزج مع الماء تدعى التجمد السريع (Flash setting) مما يفقد العجينة مرونتها و يقلل بالتالي قابلية تشغيلها و هذا يعيق عملية الصب.

الثاني: انتشار كمية كبيرة من الحرارة في المراحل الأولى من التفاعل مما يزيد احتمال حصول تشققات حرارية لذلك يجب كبح التفاعل السريع لـ C_3A و يتحقق ذلك بوجود الجبس الذي يضاف إلى الكلنكر أثناء طحنه، حيث يتفاعل الجبس بسرعة مع الطبقة السطحية من C_3A بوجود الماء فتتشكل طبقة كتيمة مستقرة تدعى الاترنجيت $C_6AS_3H_{32}$ (ettringite) تغلف حبيبات الـ C_3A و تمنع استمرار التفاعل.

• يتم تفاعل C_3A مع الماء في حال كان الاسمنت يحوي كمية كافية من الجبس على الشكل التالى:


 C_3A + $3CSH_2$ + 26H \rightarrow $C_6AS_3H_{32}$ Tri-calcium gypsum water ettringite Aluminate في حال استهلكت كامل كمية الجبس قبل انتهاء إماهة الـ C_3A عندئذ الاتيرنجيت يصبح غير مستقر ليبدأ بالتفاعل مع C_3A بوجود الماء ليشكل أحادي سلفو الومينات C_3A (monosulfoaluminate):

$$C_3A + C_6AS_3H_{32} + 4H \rightarrow 3C_4ASH_{12}$$

أيضاً أحادي سلفو الالومينات يتفاعل مع شوارد الكبريت كمصدر خارجي ليتشكل الاترنجيت على الشكل التالي:

$$C_4ASH_{12}$$
 + $2CSH_2$ + $16H$ \rightarrow $C_6AS_3H_{32}$

و الشكل التالي (1-14) يعبر عن المنحني الكالومتري (دراسة سرعة التفاعل من خلال قياس معدل انتشار الحرارة في واحدة الزمن) الخاص بإماهة C_3A .

الشكل(1-14) المنحني الكالومتري الخاص بإماهة C3A

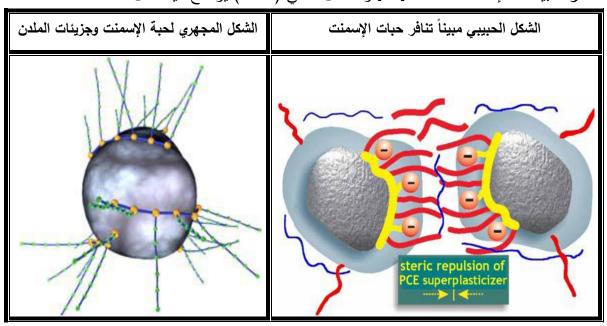
و من المنحنى السابق نستنتج مايلى:

- ذروة الحرارة الأولى تتجلى بعد 15-10 دقيقة من بدء التفاعل ثم معدل الحرارة ينخفض بوضوح الى قيمة منخفضة تعود إلى تشكل طبقة الايترنجيت المانعة حول حبيبات C₃A.
 - تبقى درجة حرارة الإماهة عند قيمة منخفضة حتى تتحطم طبقة الايترنجيت التي لا تلبث أن تتحول إلى أحادي سلفو الألومينات و ذلك بعد استهلاك كامل كمية الجبس المستخدم لتشكيل الاترنجيت.
 - في حال كانت كمية الجبس المضافة بحدها الأقصى هذا يعني أن الايترنجيت سيبقى ثابتاً و مستقراً فترة أطول.
 - بأغلب أنواع الإسمنت الايترنجيت يبقى ثابتاً لمدة زمنية تتراوح من 36-12 ساعة.
- يزداد معدل درجة الحرارة عند تحول الايترنجيت إلى أحادي سلفو الألومينات و يصل مرة ثانية الى ذروة الحرارة الموضحة بالشكل (1-14) و بعد ذلك لا يلبث أن ينخفض وصولاً إلى وضعية ثابتة و مستقرة.

Hydration of C₄AF الماهة الومينات رباعي الكالسيوم الحديدية -4-12-1

إماهة C₄AF يشكل نفس منتجات C₃A بغياب أو بوجود الجبس على الشكل التالى:

$$C_4AF + 3CSH_2 + 21H \rightarrow C_6(A,F)S_3H_{32} + (A,F)H_3$$
 $C_4AF + C_6(A,F)S_3H_{32} + 7H \rightarrow 3C_4(A,F)SH_{12} + (A,F)H_3$
 $=$ صفات التفاعل:


- يتفاعل بشكل مشابه لـ C_3A و لكنه أبطأ و أقل نشراً للحرارة.
- C_4AF لا يتميه بسرعة كاملة لتشكيل فترة التجمد السريع و بوجود الجبس في الإسمنت يكون دوره مبطىء لتفاعل إماهة C_4AF بالمقارنة مع C_3A .

عند زیادة محتوی الحدید لـ C_4AF ستصبح إماهة C_4AF أبطأ.

تظهر التجارب المخبرية أن الإسمنت الحاوي على نسية منخفضة من C_3A و عالية من C_4AF يكون مقاوماً جداً للتآكل الكبريتي.

13-1 آلية عمل الملدنات The plasticizers' mechanism

عندما يمزج الإسمنت مع الماء تتشكل طبقة هلامية غنية بالشوارد على سطح حبيبات الإسمنت، بعضها يكون مشحوناً بشحنات موجبة و بعضها بشحنات سالبة .تتشأ قوى تجاذب كهربائي ساكن بين الحبيبات ذات الشحن المتعاكسة فتتجمع هذه الحبيبات على بعضها محتجزة فيما بينها كمية من الماء و عند إضافة الملدن إلى ماء الجبل تتعدل بعض الشحنات فمجموعة السلفون مثلاً تعدل الشحنات الموجبة على سطح حبيبات الإسمنت عندئذ تزول قوى التجاذب و تظهر قوى التنافر بين الحبيبات ذات الشحنات السالبة فتبتعد عن بعضها محررة الماء المحتبس بينها فتبدو العجينة الإسمنية أكثر ميوعة .و ما يدعم هذا التفسير أن كمون زيتا (Zetta potenial) الذي يقيس الكمون على سطح الحبيبات الصغيرة يصبح أكثر سلبية عند إضافة الملدنات [52] و الشكل التالي (1-15) يوضح آلية عمل الملدنات.

الشكل (1-15) آلية عمل الملدنات [54].

تخفض الملدنات [40] عموماً الماء بنسة تتراوح بين (%12-8) مع المحافظة على نفس قابلية التشغيل، على حين السوبر ملدنات يمكنها تخفيض الماء بنسبة بين (%30-20).

يعتمد مدى تأثير الملدنات المضافة إلى الخلطة البيتونية على العوامل التالية:

1-نسبة الجرعة من المادة المضافة كنسبة مئوية من وزن الإسمنت ؟

2-أنواع الإسمنت المستخدم و مدى تلائمه مع نوع الملدن المضاف،

3-مواصفات الحصويات المستخدمة؛

4-آلبة الخلط؛

5-درجة حرارة الجو أثناء الخلط.

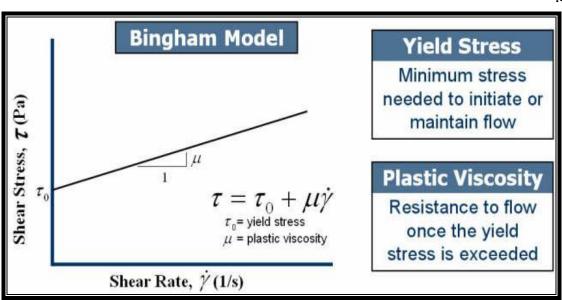
14-1-تأثير الملدنات على ميكانيزم الإماهة

The effects of plasticizers on the water-cement system

لمعرفة تأثير الملدنات على خواص البيتون و هو في الحالة الطرية لا بد من دراسة تأثيرها على ميكانيزم الإماهة و التركيز على النقاط الرئيسية التالية:

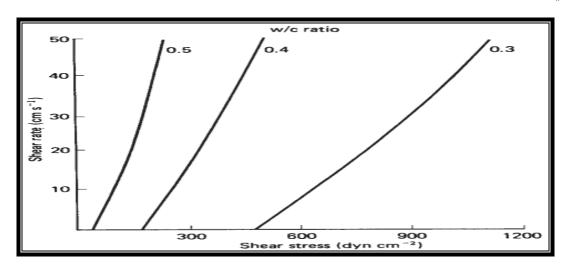
Rheological effect التأثير الريولوجي -1-14-1

يمكن التعبير عن بعض خواص البيتون الطري من خلال الصفات الريولوجية للعجينة الإسمنتية المحتواة فيه حيث أن البيتون بمعدل عال من w/c يعطى سيولة أعلى من قرينه بمعدل w/c المنخفض.


تتعلق خواص البيتون و هو في الحالة اللدنة (البلاستيكية) بعدة عوامل مثل نوع و شكل الحصويات و عيار الإسمنت و نوعه....الخ.

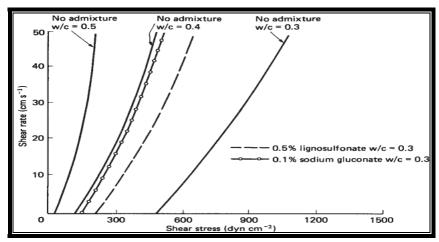
يمكن التعبير عنى تأثير ريولوجيا العجينة الإسمنتية بالمتغيرات التالية كما يلي [55]:

1- تعبر لزوجة العجينة الاسمنتية viscosity عن قوام و تدفق البيتون في الحالة الطرية consistency عن قوام و تدفق البيتون في الحالة الطرية و or fluidity و تعرف اللزوجة بأنها ميل المنحني المعبر عن العلاقة بين معدل القص و إجهاد القص و المقاس بجهاز الـ Viscometer الذي يصف سلوك الجريان للهيتون الطري.

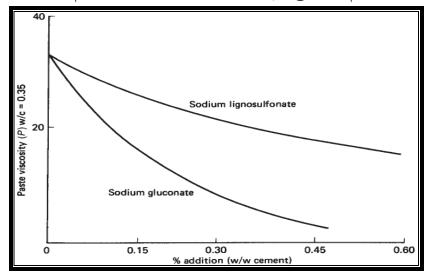

2—يعبر إجهاد الخضوع للعجينة الإسمنتية عن تماسك البيتون بالحالة اللدنة، و يعرف إجهاد الخضوع بأنه الإجهاد عند بدء الجريان وبالتالى عند معدل الق0=0.

حدد بنغام المتحولات الريولوجية باللزوجة و إجهاد الخضوع للعجينة الاسمنتية وفق المخطط (1-16) أدناه:

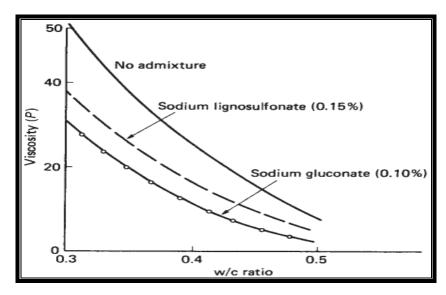
الشكل (1-16) موديل بنغام للمتحولات الريولوجية


و المخطط التالي (1-17) يعبر عن تأثير تغير النسبة w/c على لزوجة و إجهاد الخضوع للعجينة الإسمنتية الخالية من الإضافات فعند تخفيض النسبة w/c تزداد كلا من اللزوجة و إجهاد الخضوع و بالتالى يقل التدفق و يزداد التماسك [55].

الشكل(1-17) تغير معدل القص و إجهاد القص للعجينة الإسمنية عند النسب المختلفة لـ w/c.


بالعودة إلى تأثير الإضافات المخفضة للماء على ريولوجيا العجينة الإسمنتية، يمكن أن نشاهد بالمخطط التالي (1-18) أن إضافة أنواع مختلفة من الإضافات لا تغير من شكل المنحني المعبر عن علاقة معدل القص بإجهاد القص إنما تزيحه نحو تقليل اللزوجة و إجهاد القص أي تزيد من سيولة و تدفق العجينة و البيتون الطري.

ملاحظة:من المفيد اعتبار لزوجة العجينة الإسمنتية معيار أساسي لتقييم و دراسة تأثير الإضافات المخفضة للماء [55] .


الشكل (1-18) تغير علاقة معدل القص و إجهاد القص للعجينة الاسمنتية الحاوية على الملدنات.

تؤثر نسبة إضافة الملدنات (كنسبة وزنية من وزن الاسمنت) و نوعها على لزوجة العجينة الاسمنتية ذات المحتوى الثابت من w/c=0.35 كما في الشكل التالي (1-1) الذي يوضح تأثير الإضافات المخفضة للماء على لزوجة العجينة الإسمنتية بحيث تقل اللزوجة عند زيادة نسبة الإضافة لمختلف الأنواع، و تأثير مادة ليغنوسولفونات الصوديوم أقل على اللزوجة من مادة غلوكونات الصوديوم [55]..

الشكل (1-19) تأثير نسب الإضافة المختلفة لنوعين من الملدنات على لزوجة العجينة الإسمنتية.

و تتغير اللزوجة عند تغير النسبة w/c رغم ثبات نسبة الإضافة كما في الشكل (1-20) الذي يوضح تغير تأثير الإضافات المخفضة للماء على لزوجة العجينة الإسمنتية عند النسب المختلفة من w/c [55].

الشكل (1-20) تغير تأثير الملدنات المختلفة على لزوجة العجينة الإسمنتية عند النسب المتغيرة لـ w/c.

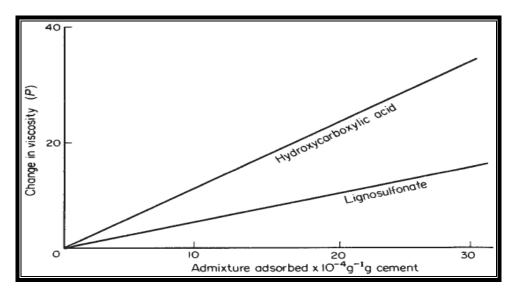
1-2-14-1 التأثيرات السطحية الأولية: Initial surface effects

تعود الصفات الريولوجية للعجينة الإسمنتية إلى طبيعة قوى التجاذب و التنافر الناشئة بين جزيئات الإسمنت المميهة و غير المميهة التي يمكن تلخيصها على النحو التالي:

1 –قوى فاندرفالز التجاذبية بين جزيئات الإسمنت و التي تكون عالية القيمة و لكن فقط على مسافات جزئية بحدود (5-7mm).

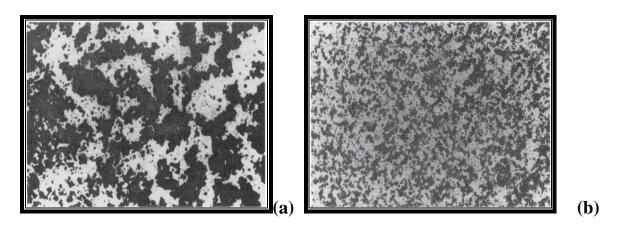
2-التنافر الكهربائي بسبب الطبيعة الكاتونية لجزيئات الإسمنت السطحية المتكافئة الشوارد لذرات ،2-التنافر الكبير لترابط الشاردة السالبة ،Al and Si هذا التنافر أقل بالمقارنة مع قوى فاندرفالز بسبب الاحتمال الكبير لترابط الشاردة السالبة مع جزيئة الماء عند المسافة الجزيئة بحدود 15nm [29].

و يتجلى تأثير الملدنات على سطح الإسمنت بالنقاط التالية:


- تخفض الملدنات بكمياتها القليلة قوى فاندرفالز التجاذبية و بالتالي تزداد كمية ادمصاص جزيئات الإسمنت المميهة للملدنات [30, 31–31].
- تختلف جزيئات الإسمنت بنسبة ادمصاصها للملدنات المضافة وفق الجدول (1-3) أدناه الخاص بالليغنوسولفونات الكالسيوم [36, 37]:

الجدول (1-3) نسب ادمصاص جزيئات الإسمنت لمادة ليغنوسولفونات الكالسيوم المضافة.

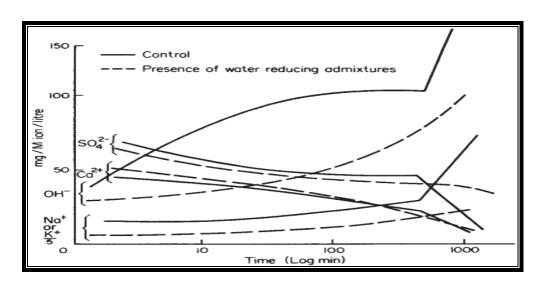
جزيئات الادمصاص	نسبة الادمصاص(%)		
C ₃ A(الغير المميهة)	0		
(ب ندية سدا سدية) C_3A - C_2AH_8 (المميهة) (ب ندية يدة سداس) C_3A - C_2AH_{13} (المميهة)	2.2		
(بدنية مكعبية)C3A -C2AH6(المميهة)	0		
СН	12		
(الغير المميهة) $\mathrm{C}_3\mathrm{S}$	0		
C ₃ S(المميهة)	7		


علماً أن الاختصارات السابقة تدل على: C=CaO, A=Al₂O₃, S=SiO₂, H=H₂O

تشكل جزيئات الملدنات المتفاعلة مع جزيئات الإسمنت المميهة السطحية عدد من الطبقات السطحية على شكل حاجز إعاقة فيزيائي يعد عاملاً أساسياً للتنافر الذري يمنع جزيئات الإسمنت من الدخول ضمن مجال قوى فاندرفالز و بالتالي تخفيض لزوجة العجينة الإسمنتية [31] التي تتأثر بكمية ادمصاص جزيئات الإسمنت السطحية و نوع الملدنات المضافة وفق المخطط (1-21):

الشكل(1-21) تخفيض لزوجة العجينة الإسمنية عند تغير كمية ادمصاص الملدنات المختلفة من قبل جزيئات الإسمنت.

• تقوم الملدنات المضافة بتشتيت كتل جزيئات الإسمنت إلى جزيئات صغيرة [31,36,38] موضحة في الشكل (1-22)، مما يسمح بزيادة المساحة السطحية للإسمنت بحدود (%40-30) [31, 36] و هذا ما يفسر السرعة الزائدة لإماهة الإسمنت بعد فترة التأخير الأولية.

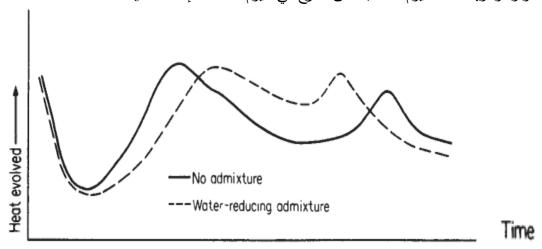


الشكل (1-22) تشتت جزيئات الإسمنت بفعل الملدنات: (a) قبل الإضافة، (b) بعد الإضافة

Effects on the products and kinetics of التأثير على منتجات الإماهة. 3-14-1 hydration

Aqueous phase hydration products التاثير على منتجات الإماهة المنحلة المنحلة على منتجات الإماهة المنحلة

- تؤخر الملدنات إماهة C_3S و بالتالي يزداد تركيز <u>شاردة الكالسيوم</u> في المحلول في المراحل الأولى من الإماهة لا يلبث أن يقترب من حدوده بغيابها، و يعود ذلك إلى التأخر في ترسب الكالسيوم هذا الذي يحدث بشكل مبكر بغياب الإضافة.
- يقل تركيز شاردة الكبريتات عادة بسرعة، بينما بحضور الملدنات يبقى التركيز عالياً بسبب التأخر في تفاعل C_3A مع الجبس و تشكيل الايترينجيت .
- في البداية يكون تركيز شاردة الهيدروكسيل منخفض بسبب التأخر في إماهة C₃S و تشكيل ماءات الكالسيوم، و فجأة يزداد بسبب التحطيم التدريجي للطبقة الواحدة المانعة المتشكلة بفعل الملدنات معطية انتشار أسرع لمنتجات الإماهة.
 - تتصرف الشوارد المعدنية القاوية مثل شاردة البوتاسيوم والصوديوم بشكل مماثل لتركيز الهيدروكسيل و ذلك بسبب التأخر في إماهة C_3S .



الشكل(1-23) تأثير الملدنات على منتجات الإماهة [55].

2-3-14-1 التأثير على منتجات الإماهة الصلبة Effect on solid hydration products

تؤخر الملدنات طور إماهة C_3S و C_3S و المرحلة الثانية للإماهة) و بالتالي يتأخر تشكل المركبات التالية:

- C-S-H الجيلاتينة ، حيث تعدل الملدنات في بنيتها المورفولوجية إلى شكل ورق القصدير المجعد التي يعتقد أنها المسؤولة عن حالة الانكماش الجاف للعجينة بعد إضافة الملدن.
- CH البلورية ذات البنية السداسية، و قد تعدل الملدنات في بنيتها المورفولوجية إلى الشكل البلوري غير المنتظم، و تؤثر على عدد البلورات زيادة أو نقصان بحسب نوع الملدنات المستخدمة.
- تؤخر الملدنات طور إماهة C_3A باليوم الأول، و بالتالي تؤخر تشكل و تحول الايترنجيت إلى مونوسولفويت الكالسيوم، لا تلبث أن تسرع في اليوم الـ 14. لإماهة C_3A .

الشكل (1-24) تأثير الملدنات على تطور الحرارة المنتشرة من الاسمنت [55].

15-1-تأثير الملدنات على خواص البيتون:

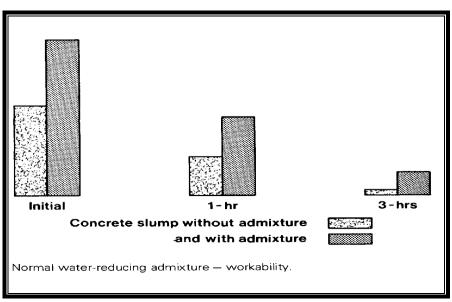
The effects of plasticizers on the properties of concrete

1-15-1 تأثير الملدنات على خواص البيتون اللدن

The effects of plasticizers on the properties of plastic concrete

Air entrainment:محتوى الهواء -1-1-15-1

تميل الملدنات ذات التركيب الكيميائي الليغنوسولفونات إلى زيادة محتوى الهواء ، علماً أن المواصفات البريطانية BS 5075 Part1 توصى بأن نسبة الزيادة في الحجم الناجمة يجب أن لا تتجاوز الـ 2%،


في الوقت الذي تخفض فيه ملدنات الهيدروكاربوكسيليك و البولي سكاريد" بالمحتوى الجزئي القليل منها " محتوى الهواء غالباً.

2-1-15-1 زمن التجمد: Setting time

حددت المواصفات ال بريطانية الطري BS 5075 Part1 تأثير الملدنات على زمن التجمد للبيتون الطري ضمن الساعة الأولى للخلط، و عملياً لا تؤثر الملدنات مخفضات الماء على خواص التجمد للبيتون الطري [40].

3-1-15-1 التشغيل: Workability

تزيد الملدنات من قابلية التشغيل للبيتون دون تغير النسبة w/c، و إذا اعتبرنا أن الهبوط معيار لقياس قابلية التشغيل فإن الهبوط الأولي النموذجي الذي يقع ضمن المجال (25-75mm) سوف يزداد بفعل الملدنات بحدود (50-60mm) و هذا ما يوضحه الشكل (25-1):

الشكل (25-1) تأثير الملدنات على قابلية تشغيل البيتون

4-1-15-1 - خسارة الهبوط: slump loss:

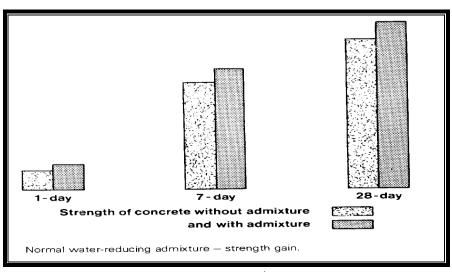
يُعتبر معدل فقدان الهبوط للبيتون الطري الحاوي على الملدنات مشابهاً أو أكبر منه للبيتون التقليدي و ذلك في حال كون هذه الملدنات مستخدمة خصيصاً لزيادة قابلية التشغيل أو لتخفيض نسبة الماء ، حيث تسمح الملدنات مخفضات الماء بزيادة الؤمن المسموح بين الخلط و الصب للبيتون الطري [40].

1-15-1-15-النضح (ظاهرة الطفو) Bleeding:

تسبب ملدنات الهيدروكاربوكسيليك و البولي سكاريد "بالمحتوى الجزئي القليل منها" زيادة في ظاهرة النضح للخلطات البيتونية المتعرضة لطفو الماء [40,41]، في وقت تخفض فيه ملدنات الليغنوسولفونات هذه الظاهرة بسبب قدرتها على رفع محتوى الهواء.

6-1-15-1 التماسك: Cohesion

تزيد ملدنات الليغنوسولفونات و الهيدروكاربوكسيليك تماسك الخلطة البيتونية مع المحافظة على قابلية التشغيل، بخلاف البيتون التقليدي لأن تأمين قابلية التشغيل لديه يعتمد على زيادة الماء فيؤثر سلباً على تماسكه [40].


:Heat of hydration حرارة الإماهة 7-1-15-1

لا تؤثر الملدنات على الارتفاع الأعظمي لدرجة حرارة البيتون أثناء الإماهة إلا في حال تغير تصميم مزيج الخلطة و الذي قد يقتضي أحياناً تخفيض محتوى الإسمنت الذي سيخفض حكماً من درجة حرارة الإماهة مباشرة [40].

1-2-15-1 الملدنات على البيتون المتصلب

The effects of plasticizers on the properties of hardened concrete :Compressive strength على الضغط 1-2-15-1

تزيد الملدنات من مقاومة البيتون على الضغط عن طريق تخفيض النسبة سلاحتفاظ بقابلية التشغيل. حددت المواصفات السلام المقاومة قد تزداد على الأقل 10% بعد (7-28day) مقارنة مع البيتون التقليدي كما في الشكل (1-26):

الشكل (1-26) تأثير الملدنات على مقاومة البيتون.

تزيد الملدنات من المقاومة خلال كل الأعمار فتستخدم لرفع المقاومة الابتدائية كبديل عن المسرعات، حيث تستطيع الملدنات رفع المقاومة في اليوم الأول حوالي (%15-10).[40].

2-2-15-1 الشد المباشر و الشد بالانعطاف Tensile and flexural strength:

لا تعدل الليغنوسولفونات و أنواع الهيدروكاربوكسيليك من العلاقة بين مقاومة الضغط و مقاومة الشد، حيث تؤثر الملدنات على مقاومة الشد بنفس الطريقة التي تؤثر بها على مقاومة الضغط و تتم دراسة تأثير الملدنات على مقاومة الشد كما في البيتون الذي لا يحوي ملدنات.

:Creep and shrinkage الزحف و التقلص -3-2-15-1

تؤثر ملدنات الليغنوسولفونات باعتبارها مخفضة للنسبة W/c بشكل طفيف على حجم العجينة الإسمنتية، على حين ملدنات الليغنوسولفونات مع كلوريد الكالسيوم أو التريتانولامين باعتبارها مسرعات فتزيد من تقلص التجفاف و بالتالي التقلص، بينما ملدنات الهيدروكاربوكسيليك لوحدها لا تبدي تغير في البيتون و جميع الملدنات السابقة تؤثر على الزحف بنفس الطريقة التي تؤثر بها على التقلص.

4-2-15-1- الديمومة Durability

تعزز الملدنات ديمومة البيتون بشكل واضح عن طريق تخفيض النسبة سلام و بالتالي زيادة كثافة و كتامة البيتون، و عموماً تستخدم ملدنات الليغنوسولفونات و هيدروكسي كاربوكسيلسك لمقاومة و مواحهة الكبريتات و بالتالي تحسين الديمومة [42].

تستطيع الملدنات تعزيز ديمومة البيتون تحت تأثير حلقات الصقيع و الذوبان المتعرض لها [25]. لا توجد معلومات تشير إلى أن استخدام الملدنات في البيتون لها تأثير على التلاحم مع الفولاذ.

16-1-تأثير السوبرملدنات على خواص البيتون

The effects of superplasticizers on the properties of concrete

1-16-1-تأثير السوبرملدنات على خواص البيتون اللدن

The effects of superplasticizers on the properties of plastic concrete

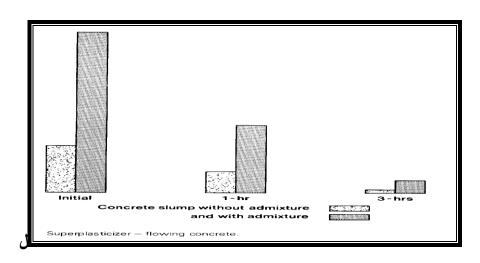
: Air entrainment محتوى الهواء

تختلف أنواع السوبرملدنات في إمكانية المحافظة على حجم الهواء حيث تميل السوبرملدنات ذات التركيب الكيميائي سيلفونات الميلامين إلى خفض محتوى الهواء خصوصاً في حال خلطة بيتونية بنسبة منخفضة

من w/c، على حين تزيد عادة السوبر ملدنات من نوع سولفونات النفتالين و البولي اكريليت من محتوى الهواء المطلوب للخلطة البيتونية ذات قابلية التشغيل العالية .

أشارت العديد من الأبحاث إلى ميل البولي اكريليت في البيتون الجاهز إلى ثبات واضح بحجم الهواء [43].

: Setting time زمن التجمد -2-1-16-1


تزيد السوبر ملدنات بالجرعات العادية من زمن بداية و نهاية التجمد في حال الطلب على البيتون بقابلية تشغيل عالية. و يختلف مقدار الزيادة بحسب نوع السوبر ملدن (نادراً ما يزيد عن 2hour) و هي على الترتيب:

SMF < SNF < polyacrylates.

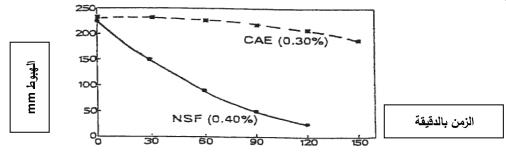
إذا كان المطلوب من السوبرملدنات تخفيض النسبة w/c عندئذ يكون هناك تأثير يذكر على زمن التجمد المحدد ضمن الساعة الأولى وفق المواصفات البريطانية BS 5075 Part1 ، وقد يُسجل نقصان قليل في زمن التجمد عند استخدام SNF و SMF و زيادة طفيفة في حالة البولى اكريلي. [44,45].

3-1-16-1 قابلية التشغيل Workability:

تزيد السوبرملدنات من قابلية التشغيل للبيتون دون تغير w/c و إذا اعتبرنا أن الهبوط معيار لقياس قابلية التشغيل فإن الهبوط الأولي النموذجي الذي يقع ضمن المجال (25-75mm) سوف يتحول إلى الهبوط المنبسط الذي يصعب قياسه باستخدام المخروط لذلك سوف يتم قياسه عن طريق قياس قطر الانتشار أو الانبساط المخصص لقياس قابلية تشغيل البيتون المائع على طاولة الجريان و الذي يقع ضمن المجال (51-62cm) [40].

الشكل (27-1) تأثير السويرملدنات على قابلية تشغيل البيتون [40].

إن القوام الذي نحصل عليه من خلال السوبر ملدنات يتم الاحتفاظ به لمدة محدودة ليس لأكثر من (-30 لم القوام الذي نحصل عليه من خلال السوبر العائق الرئيسي لاستخدام السوبر ملدنات في إنتاج البيتون بقابلية تشغيل عالية مثل البيتون الذاتي التوضع لقصر مدة التأثير.


تحمل ملدنات البولي اكريليت وعوداً بأن الهبوط العالي سيستمر لمدة زمنية تزيد عن ساعتين بسبب قدرتها الكبيرة على خلق حاجز الإعاقة بالمقارنة مع النفور الكهربائي.

4-1-16-1 الهبوط slump loss:

تتشابه درجة فقدان الهبوط للبيتون المضاف إليه السوبر ملدنات مع خليط البيتون المرجعي، معتمداً ذلك فيما إذا كانت السوبر ملدنات مستخدمة لزيادة قابلية التشغيل أو لتخفيض نسبة الماء ، فعندما تستخدم السوبر الملدنات كمخفضات للماء يزداد معدل خسارة الهبوط [40].

و تشير بعض الأبحاث أن النسبة الأعلى للإسمنت تقود إلى سرعة في فقدان الهبوط للبيتون المضاف الله السوبر ملدنات.

تحتفظ ملدنات البولي أكريل عن بالهبوط لمدة أطول تصل لأكثر من ساعتين كما هو مبين في الشكل (-1 28):

الشكل (1-28) قدرة ملدنات البولي أكريليت على الاحتفاظ بالهبوط لمدة أطول [54]

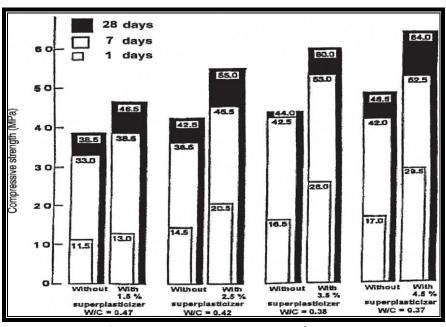
: Segregation والانفصال Bleeding

عادة يحدث النضح (ظاهرة الطفو) و الانفصال (أي انفصال المواد الحصوية عن الملاط الإسمنتي) في البيتون المائع في حال عدم التصميم الدقيق لمركبات الخلطة البيتونية ، لذلك يجب توخي الحذر أثناء تصميم الخلطة من خلال معايرة المواد الناعمة جدا (الإسمنت و الإضافات الناعمة المارة من المنخل 300um) و استخدام بعض الإضافات السائلة المانعة للنضح خاصة من أجل البيتون المضخوخ [40].

:Heat of hydration درجة حرارة الإماهة-6-1-16-1

لا تؤثر السوبرملدنات على الارتفاع الأعظمي لدرجة حرارة البيتون، إلا في حال تغير تصميم مزيج الخلطة مثلاً تخفيض محتوى الإسمنت من شأنه تخفيض درجة حرارة الإماهة مباشرة [40].

volume deformation التشوهات الحجمية 7-1-16-1


بينت ورشات العمل أن السوبر الملدنات لا تعاكس تأثير الزحف أو الجفاف والانكماش و من الطبيعي أن البيتون الطري ينكمش و يجف مبكراً و يترك تشققات قد تزداد تحت تأثير أحوال الجفاف ما لم يتم أخذ الحيطة و الحذر [40].

1-2-16-1 تأثير السوبرملدنات على البيتون المتصلب

The effects of superplasticizers on the properties of hardened concrete :Compressive strength المقاومة على الضغط 1-2-16-1

تزيد السوبرملدنات من مقاومة البيتون على الضغط عن طريق تخفيض النسبة w/c مع الاحتفاظ بقابلية التشغيل.

يظهر الشكل (1-29) أدناه تطور مقاومة البيتون عالي المقاومة المائع الحاوي على السوبرملدنات من نوع SMF مقارنة مع البيتون التقليدي ذي العيار 300Kg/m3 و مجال قابلية التشغيل (25-100mm) مقدراً بمخروط ابرامز.

الشكل (1-29) تأثير السويرملدنات من نوع SMF على مقاومة البيتون.

تزيد السوبر ملدنات من المقاومة خلال كل الأعمار فتستخدم لرفع المقاومة الابتدائية كبديل عن المسرعات، حيث تستطيع الملدنات رفع المقاومة في اليوم الأول حوالي %50.

2-2-16-1 الشد المباشر و الشد بالانعطاف Tensile and flexural strength:

لا تعدل السوبرملدنات من العلاقة بين مقاومة الضغط و مقاومة الشد المباشر و الشد بالانعطاف، حيث تؤثر على مقاومة الشد بنفس الطريقة التي تؤثر بها على مقاومة الضغط.

:Creep and shrinkage الزحف و التقلص 3-2-16-1

أشارت أغلب الدراسات [40,46] إلى أن البيتون الحاوي على السوبرملدنات يمتلك نفس خواص الزحف و التقلص للبيتون العادي، حيث يزداد التقلص بالعمر المبكر للبيتون المائع تحت ظروف التجفاف مالم تؤخذ احتياطات المعالجة الكافية.

4-2-16-1 الديمومة: Durability

تعزز السوبرمادنات ديمومة البيتون بشكل واضح عن طريق تخفيض النسبة w/c و بالتالي زيادة كثافة و كتامة البيتون، و عموماً يمتلك البيتون الحاوي على السوبرمادنات نفس القدرة على مواجهة هجوم الكبريتات مقارنة مع البيتون العادي.

تستطيع السوبرملدنات تعزيز ديمومة البيتون تحت تأثير حلقات الصقيع و الذوبان المتعرض لها عن طريق تأمين عامل المسافة بين الفقاعات الهوائية من نظام حجم الفراغات الهوائية بحدود (0.2mm). [47-50].

لا توجد معلومات تشير إلى أن استخدام الملدنات في البيتون لها تأثير على التلاحم مع الفولاذ.

1--17-أسس معيارية لاختيار الملدنات والسوير ملدنات:

1-معدل تخفيض النسبة w/c.

. Setting time زمن التجمد −2

. Workability معدل الزيادة أو النقصان في قابلية التشغيل

4-التوافق أو التلاؤم مع الإسمنت المستخدم.

5-مقاومة البيتون على الضغط المطلوبة.

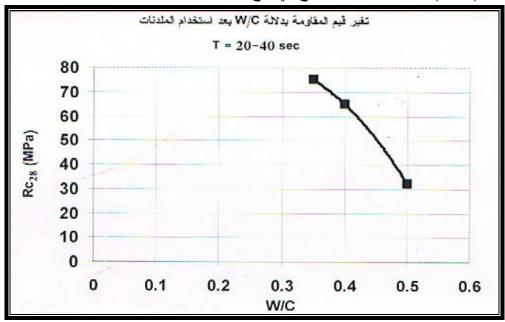
6-التكاليف.

بينت التجارب بأنه ليس لجميع الملدنات التجارية القدرة على بعثرة حبات الإسمنت و تخفيض النسبة w/c و التحكم بالخواص الريولوجية للخلطة البيتونية خلال الساعة الأولى من لحظة التماس بين الإسمنت و الماء [58].

18-1-الدراسات السابقة Literature Review

1-18-1-دراسة الأثر الإيجابي للملدنات:

تم دراسة الأثر الإيجابي للملدنات عندما تستخدم بالشكل الأمثل على مقاومة البيتون من خلال الوصول إلى قيم عالية لم يتم الوصول لها سابقاً [56]، مع الإشارة إلى عدم وجود تأثيرات سلبية لهذه الإضافات و ذلك لاستخدامها بنسبة قليلة جداً و لضعف التأثير الجانبي لها على البيتون بعد أن يحدث التصلب.


حيث قمنا بتحديد الزيادة في المقاومة لعينات تتشابه في القوام و تختلف عن بعضها فقط بنسبة الماء إلى الإسمنت و نسبة الملدن المضافة (تسع عينات من 3.5 و تم بذلك تخفيض النسبة 3.5 من 3.5 إلى 3.5 أي بمقدار 3.5 لينعكس ذلك إيجابياً على المقاومة التي تتغير قيمها تبعاً لتغير النسبة 3.5 وفقاً لما يلى:

الخلطة ذات النسبة w/c=0.5 تعطى مقاومة 32Mpa.

الخلطة ذات النسب w/c=0.40 تعطى مقاومة 65Mpa.

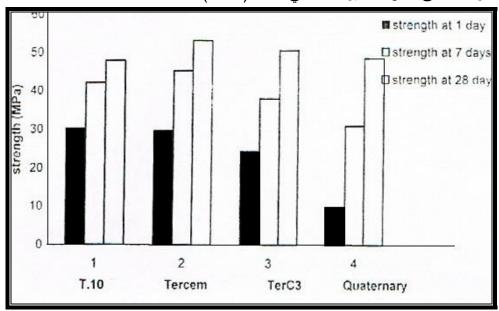
الخلطة ذات النسبة w/c=0.35 تعطى مقاومة 75Mpa.

يظهر الشكل (1-30) تأثير الملدنات الواضح في رفع قيمة مقاومة البيتون عند تخفيض النسبة w/c.

الشكل (1-30) التأثير الإيجابي للملدن في رفع المقاومة لعينات متقاربة في القوام [56].

1-2-18-1 تأثير نظافة الرمل على فعالية الملدن في المونة الإسمنتية:

تشير الأبحاث إلى أن هناك تأثير لنظافة الرمل على فعالية الملدن و ذلك من خلال تجريب خلطات بنوع واحد من الرمل مغسول و غير مغسول، مع استخدام الملدن وفق نسب الإشباع التي تم تحديدها من منحنيات سابقة و بنسبة w/c=0.4، حيث ببين الجدول (4-1) التأثير الواضح لنظافة الرمل على فعالية


الملدن، حيث ازداد زمن الجريان بمقدار 20 ثانية المقاس بجهاز المانيابيلميتر و هو جهاز قياس قابلية التشغيل للمونة الاسمنتية عند استخدام نفس نسبة الملدن في خلطة استخدم فيها رمل غير مغسول بمكافىء رملى أقل [56]

الملدن.	فعالية	على	الرمل	نظافة	تأثير	(4-1)	الجدول
---------	--------	-----	-------	-------	-------	-------	--------

زمن الجريان(Sec)	نسبة الملدنp/c(%)	w/c	نظافة الرمل	
31	1.2	0.4	ES=96	
51	1.2	0.4	ES=65	

1-18-3-تأثير نوع الإسمنت وتنوع الملدنات على المقاومة الميكانيكية و قابلية التشغيل للبيتون:

لم يؤثر استخدام عدة أنواع من الملدنات في تغيير المقاومة للخلطات البيتونية، بينما كان واضحاً تأثير أنواع مختلفة من الإسمنت في المقاومة و في الأعمار المختلفة حيث تم تسجيل فرق ملحوظ بين المقاومات لأنواع البيتون المختلفة و خاصة في عمر يوم واحد بعد التصلب، بينما تقلص الفرق بين مختلف المقاومات على عمر 28 يوماً.كما في الشكل (1-31).

الشكل (1-31) المقاومة الوسطية للبيتون المحضر من كل نوع من الإسمنت مع الملدنات الثلاثة، في أعمار مختلفة [57].

حيث تم استخدام أربعة أنواع من الإسمنت الكندي و هي: الإسمنت البورتلاندي عادي صنف 10 Type المواصفة الكندية) إنتاج معمل سان لورانت، بالإضافة لثلاثة أنواع من الإسمنت TerC3 إنتاج معمل لافارج، و إسمنت TerC3 إنتاج معمل سان لورانت، و إسمنت TerC3

إسمنت إنتاج معمل كوبيك، حيث تم تصنيع أنواع الإسمنت المخلوط بإضافة مواد ملحقة إضافية (هباب السيليس، و الرماد المتطاير، و الخبث) بنسب مختلفة كما هو مبين في الجدول التالي (1-5):

نوع الاسمنت		المواد الإسمنتية الملحقة%					
		الكثافة	الإسمنت	هباب السيليس	الرماد المتطاير	الخبث	
1	T.10 ST Laurent	3.15	100	-	-	-	
2	TerCem-Lafarge	3.05	75	5	-	20	
3	TerC3- ST Laurent	2.85	75	5	20	-	
4	SPCI-Quebec	2.8	41.9	3.8	43.8	10.5	

الجدول (1-5) المواد الداخلة في تركيب أنواع الإسمنت ونسبها [57] .

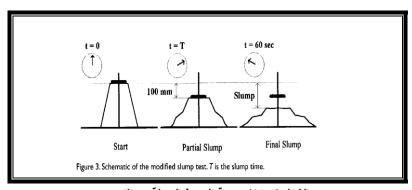
كما تم استخدام ثلاثة أنواع من الملدنات الأول اساسه نفتالين (Disal) و الثاني أساسه بولي اكريلات (Plastol5000) و الثالث أساسه ميلامين +نفتالين (Cataxol1000).

في الخلطات البيتونية المحضرة من نوعي الإسمنت TerCem و TerC3 كان فقدان الهبوط (تناقص قابلية التشغيل) أسرع من مثيله في الخلطات المحضرة مع نوعي الإسمنت TerC3 و SPCI و TerC3، حيث كان الهبوط في الخلطة المحضرة مع إسمنت TerCem و TerC3 بعد مرور 60min بحدود 40mm الهبوط في الخلطة المحضرة مع كل من نوعي الإسمنت TerC3 و بعد 120min بعدود mm بعدود mm و SPCI بعد ما التوالي. ربما يعود و SPCI بعد ما المحضرة مع كل من نوعي الإسمنت SPCI و SPCI و SPCI و أو لأن السبب في هذا إلى وجود مادة الرماد المتطاير في كلا النوعين من الإسمنت SPCI و TerC3 ، أو لأن نسبة الملدن مع هذين النوعين من الإسمنت كانت أعلى من مثيلتها مع نوعي الإسمنت الآخرين.

تأثير الملدن من النوع الثاني (Plastol) بنسبة صغيرة (%0.4) أشد و أكثر ملائمة مع أنواع الإسمنت ، من تأثير كلا النوعين الآخرين (Disal) و (Cataxol) اللذين أبديا تقريباً التأثير ذاته في الخلطة البيتونية، كما لوحظ الإسمنت من نوع SPCI تطلب نسبة أعلى من الملدن مقارنة مع باقي أنواع الإسمنت الأخرى التي تطلبت تقريباً النسبة نفسها من الملدن [57].

1-4-18-أثير نشاط الإسمنت الكيميائي على صناعة البيتون عالى المقاومة:

تبين التجارب أنه من الصعب باستخدام إسمنت نشيط كيميائياً تصنيع بيتون عالي المقاومة بنسبة w/c منخفضة بحيث يحتفظ بهبوط مخروط مقداره mm 50 بعد مرور 30 دقيقة فقط بعد الخلط حتى و لو كان مقدار الهبوط الأولى mm [51].


أيضاً بعض أنواع البيتون التي تتميز بخواص ريولوجية جيدة فإنها تتطلب كمية قليلة من الماء بحدود (120 L/m³)، بينما بعض أنواع الإسمنت النشيطة فإنها تعيق تشكيل خلطة بيتونية بهبوط مخروط يعادل (200 mm) بأقل من (150 L/m³) أفضلاً عن ذلك فإن أحد العيوب الرئيسية للجيل الأول من الملدنات كان استمراريتها القصيرة في تسييل البيتون، إذ كانت فعاليتها تستمر لمدة (15-30 min) بعد الجبل [52].

1-18-5-طرق تقييم التلاؤم بين الإسمنت والملدن:

يصعب حتى وقتنا الحاضر من خلال النظر إلى مواصفات أي إسمنت معين أو ملدن معين التعرف على سلوكهما الريولوجي المتوقع في الخلطة البيتونية المنفذة بنسبة w/c منخفضة.

لا شك أن أفضل الطرق لتقييم التلاؤم بين الإسمنت و الملدن هو إجراء دراسة تجريبية مباشرة للخواص الريولوجية للعجينة و المونة الإسمنتية أو الخلطة البيتونية تحوي كلاً من الإسمنت و الملدن معاً [58]. يعتبر اختبار الهبوط هو الأكثر شيوعاً لوصف قابلية التشغيل و لكن تبين أنه لا يعطي وصفاً كاملاً لجريان البيتون و صلاحيتها ليست مؤكدة لذلك قام العلماء بتطوير مخروط الهبوط بحيث يتم قياس الهبوط النهائي بالإضافة إلى قياس الزمن الذي يستغرقه البيتون لهبوط أول 100mm (أي سرعة الهبوط) كما في الشكل (1-32).

و يعطي مخروط أبرامز في كل تجارب البيتون الطري صورة واضحة عن حد القص و بحساب الزمن اللازم لهبوط بارتفاع 10cm، يمكن أن نحصل على فكرة عن اللزوجة مما يسمح باستبعاد البيتون اللزج كثيراً.

الشكل (1-32) تجربة الهبوط المعدلة مع الزمن.

و الطريقة الثانية الواسعة الانتشار هي طريقة قمع مارشال حيث يعتمد مبدأ الطريقة على تحضير عجينة إسمنتية (إسمنت و ماء و ملدن بنسبة معينة) ثم قياس الزمن اللازم لجريان حجم معين من هذه العجينة عبر فتحة القمع بعد مرور min 5 و min منذ لحظة بدء مزج الماء مع الإسمنت [52].

1-18-6-مفهوم ريولوجيا البيتون:

حاول العالم Kosmatka أن يعرف ريولوجيا البيتون من خلال ربطها بالمفاهيم التالية:

- قابلية التشغيل: التي تصف مدى سهولة توضع أو رص و إنهاء البيتون.
 - قابلية الجريان المستمر: قابلية البيتون الطري الممزوج حديثاً للجريان.
 - اللدونة: تصف مدى قابلية البيتون للنقل.

ولكن نلاحظ أن كل هذه التعاريف هي تعاريف وصفية لا تستند الى قاعدة فيزيائية لوصف سلوك المواد . الجدول (1-6) التعاريف المختلفة لقابلية التشغيل المستخدمة عالمياً.

التعريف	اسم المجتمع
خاصية البيتون الطري الممزوج حديثاً أو الملاط التي تحدد السهولة و التجانس في الخلط و	الإمريكي
الصب و الرص.	
خاصية البيتون الطري أو الملاط التي تحدد سهولة الرص و الاستخدام.	البريطاني
خاصية البيتون الطري أو الملاط التي تحدد سهولة الصب و الخلط و الرص و التي ترتبط	الياباني
بتجانس البيتون و الدرجة التي لا يوجد عندها انفصال في الحصويات.	

أيضاً حاول ريتشي تعريف جريان البيتون من خلال ربطه بعدة متحولات مثل النضح، الترسب، الكثافة وغيرها، حيث ميزه بثلاث خواص:

- الاستقرار: و له علاقة بالنضح والانفصال.
 - قابلية الرص: مكافئة للكثافة.
- قابلية النقل: لها علاقة بزاوية الاحتكاك الداخلية و قوى الالتصاق واللزوجة.

عالج باحثون آخرون البيتون الطري كمائع و استخدموا طرق ريولوجيا الموائع لوصف جريان البيتون[55].

7-18-1 تعريف جريان البيتون باستخدام المتغيرات الريولوجية

البيتون في حالته الطرية يمكن اعتباره كمائع شريطة أن ينجز مقدار محدد من الجريان و هو متجانس التركيب، هذا الشرط يمكن أن يتحقق إذا كان الهبوط على الأقل 100mm.

يتحدد جريان مائع معين من خلال إجهاد القص و معدل القص.

و يمكن تشبيه سلوك البيتون المائع بسلوك سائل بنغهام و في هذه الحالة يعرف الجريان بواسطة متغيرين : إجهاد الخضوع و اللزوجة اللدنة.

و معادلة بنغهام هي على الشكل:

$$T = T0 + \mu * \gamma$$

T: إجهاد القص المطبق

T0: إجهاد الخضوع

γ: معدل القص

μ: اللزوجة اللدنة

حدد بنغام المتحولات الريولوجية باللزوجة و إجهاد الخضوع للعجينة الإسمنتية وفق المخطط السابق (-16) و لتحديد متحولات بنغهام هناك طريقتان:

- تطبيق إجهاد قص متزايد و في الوقت نفس هنقيس معدل القص الموافق، عند الحد الذي يبدأ عنده
 الجريان يكون هو إجهاد الخضوع و ميل المنحني عند هذا الحد هو اللزوجة اللدنة
- نعرض البيتون إلى معدل قص عالي قبل الاختبار ثم يتم تخفيض معدل القص تدريجياً و يتم قياس الإجهاد و يتم رسم العلاقة بين الإجهاد و معدل القص، الإجهاد عند معدل القص = 0 هو إجهاد الخضوع و الميلان هو اللزوجة [55].

و نلاحظ أن الطريقة الثانية هي الأكثر استخداماً و ذلك بسبب سهولة التحكم بمعدل القص من خلال الريومتر

ملاحظة: بعض أنواع البيتون مثل البيتون ذاتي الارتصاص لا تتبع المعادلة الخطية لبنغهام لأنه في حال استخدامها سوف يعطينا قيمة سالبة لإجهاد الخضوع و لكن يتم استخدام معادلة أخرى و هي معادلة HB:

$$T = T0 + a*\gamma^h$$

a,b هي متحولات تصف السلوك الريولوجي للبيتون

(في هذه المعادلة نلاحظ ان اللزوجة اللدنة لايمكن حسابها مباشرة)

حاول الباحثون تقليل عدد المتحولات في معادلة HB إلى متحولين فقط حيث يمكن اعتبارها معادلة خطية على مجالات صغيرة و يحسب منها إجهاد الخضوع و لكن اللزوجة تحسب من العلاقة التالية:

$$\mu' = \frac{3a}{b+2} * \Upsilon^{\wedge}(b-1)$$

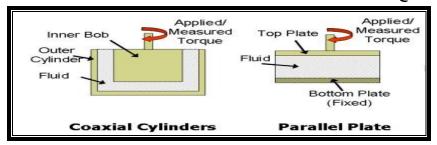
1-8-18-تقنية القياس للبيتون الطري

كما ذكرنا سابقاً فإن جريان البيتون يجب أن يتحدد على الأقل بمتحولين هما اللزوجة وإجهاد الخضوع. إن جهاز الريومتر هو الجهاز المستخدم لقياس لزوجة البيتون و لكن عند تصميم الريومتر يجب أن نأخذ بعين الاعتبار أبعاد الحصويات الخشنة، أي أن أصغر فتحة في الجهاز يجب أن تكون على الأقل ثلاث مرات قطر اكبر حصوية و ذلك لكي لا تعلق الحصويات.

إن هذه الشروط هي التي خلقت صعوبات في تصميم الاختبارات المخبرية و التي معظمها صمم بطريقة مشابهة لتوضع البيتون في الحقل و لكن هذه الاختبارات عادة ما تقيس قيمة واحدة و التي ليس من الضروري أن ترتبط بالمتحول الأساسي في معادلة بنغهام.

إن تصميم الريومتر يسمح بقياس منحني الجريان للبيتون و الذي يمثل العلاقة بين إجهاد القص ومعدل القص .

للريومتر نوعان:


1-الريومتر وحيد المحور:

يتكون من اسطوانتين متحدتي المركز الخارجية ثابتة و الداخلية تدور بسرعة يمكن التحكم بها إجهاد فيه يتولد من خلال جريان البيتون.

الفتحة بين الاسطوانتين يجب أن تكون صغيرة نسبياً مقارنة مع أقطار الاسطوانات وعادة تكون النسبة بين أنصاف أقطار الاسطوانتين بين(1.1-1) للبيتون و يجب أن تكون الفتحة من (5-3) مرات من قياس الحصويات الخشنة لمنع التأثير المتبادل بين الحصويات و جدار الجهاز.

نلاحظ أنه من أجل الحصويات التي يكون قطرها الأعظمي 10mm فإن نصف قطر الجهاز يكون 0.5m و قطر الاسطوانة الخارجية (0.53-0.55m) الأبعاد تزداد مع زيادة أبعاد الحصويات .

و نجد أنه من الصعب نقل الجهاز خارج المخبر و استخدامه في الحقل، للتغلب على هذه المشكلة صمم العلماء ريومتر معدل يحتوي على عمود مع ريش تدور في وعاء من البيتون بسرعة محددة و لكن يجب أن نتأكد من عدم حدوث انسداد في البيتون و الذي يحدث عندما يكون الهبوط اقل من200mm. هذه الطريقة تسمح لنا بحساب المتحولات بالواحدات الأساسية.

الشكل (1-33) الريومتر متوازى الصفائح و الريومتر وحيد المحور

2-الريومتر متوازي الصفائح:

و يتألف من صفيحتين العلوية تدور بسرعة نتحكم بها و يتولد فيه عزم المزدوجة من خلال مقاومة القص للمواد الصفيحة السفلية ثابتة .

معدل القص هنا غير ثابت و يعتمد على الموقع القطري أي أن معدل القص يكون أعظمي عند الحافة و البعد بين الصفيحتين يتناسب مع حجم الحصويات أي يجب أن يكون من 5-3 مرات قطر أكبر حصوية. في هذه الطريقة نحصل على المتحولات بالواحدات الأساسية.

1-19-بعض الاشتراطات العامة الخاصة باستخدام الملدنات:

تشير الأبحاث إلى أهم الاشتراطات العامة الخاصة باستخدام الملدنات [40]:

- يجب وضع لصاقات على جميع الحاويات تبين معدل الجرعة و شروط التخزين.
- يتم مزج الإضافات التي تأتي على شكل محاليل أو مساحيق ذوابة في ماء الخلطة.
- يتم إفراغ الإضافات التي تأتي على شكل مسحوق من الظرف الذي يحويها و نثرها على الحصويات قبل إضافة الماء.
- يجب توزيع المادة بصورة جيدة على الخلطة البيتونية بكاملها ليكون له التأثير الأمثل، و غالباً ما يتم ذلك آلياً و إذا ما تم توزيع المادة المضافة باليد و ليس آلياً يتوجب زيادة زمن الخلط قليلاً.
 - تتعلق الجرعة بنسب المواد الحصوية و درجة حرارة البيتون و التدرج الحبي للحصويات.
 - تبين الاختبارات الأولية فيما إذا كان التعديل المطلوب على خواص البيتون قابلاً للتحقيق ويجب الأخذ بالحسبان الزيادة المعتمدة في الجرعة لتقدير أثرها الضار.
- يجب حل الإضافات التي تعتمد في تركيبها على الكلوريد في الماء الذي سيُضاف مباشرةً إلى البيتون و بذلك يختلط الملدن كلياً بالبيتون الطرى.
 - تتطلب الإضافات الكيميائية دقة عالية في التحكم بالقياسات أكثر من أي مادة أخرى تدخل في تركيب البيتون، إذ إنها تُضاف بكميات ضئيلة و تكون عرضة للتفاوت في كمياتها.
- يجب أن يكون الخلط في جميع الأحوال على كامل الحجم و يجب أن نحصل على قوام متجانس و متماسك قدر الإمكان.
- تقاس المواد السائلة بالحجم و لا يجب إضافة المواد في أثناء النقل أو الصب أو الرص و يجب إتباع ترتيب نظامي في عملية الخلط حيث قد يختلف تأثير المواد تبعاً للمرحلة التي تتم خلالها الإضافة و يجب أن تكون عملية الإضافة بدقة كبيرة تقريباً (5%) على أن نتأكد منها بشكل منتظم.
 - لا يسمح بلمس الملدنات أو تقريبها من الفم أو الجلد أو العين.

الفصل الثاني

البرنامج التجريبي

توصيف المواد المستعملة

سنقوم في هذا الفصل بعرض القسم المخبري من البحث، و الذي سنتطرق فيه إلى الغاية من هذه الدراسة و الهدف من إجراء هذه التجارب، ثم سنتطرق إلى توصيف المواد التي استعملناها في تصميم الخلطات البيتونية من إسمنت و حصويات و ملدنات، و ما قمنا به من تجارب على هذه المواد للتأكد من جودتها و فعاليتها و الاستفادة منها بالشكل الأمثل.

2-1-مراحل الدراسة التجريبية:

- -تحديد نوع الإسمنت المستخدم و دراسة خصائصه.
- -تحديد أنواع المواد الحصوية المستخدمة في الخلطات البيتونية و دراسة خواصها.
 - -دراسة التدرج الحبي لعدة حصويات مختارة للبحث "حسية، مرقية، النبك ".
 - -تحديد معامل انتظام الحصويات لأنواع البحص الخشن المستخدم في البحث.
 - -تحديد معامل النعومة لأنواع الرمل المستخدم في البحث.
 - -تحديد المكافئ الرملي لأنواع الرمل المستخدم في البحث.
 - -تحديد نوع الملدنات التي ستتم عليها الدراسة؛
- -تحديد معاملات الخلطة البيتونية الرئيسية التي تتم دراسة تأثيرها على أداء الملدن.
- -تصميم خلطات بيتونية من المصادر المدروسة لدراسة تأثير معاملات الخلطة على أداء الملدن وفق مايلي :
 - تصميم خلطات بيتونية بمعاملات نعومة رمل mf متغيرة .
 - تصميم خلطات بيتونية للحصويات الخشنة متغيرة Dmax.
 - تصميم خلطات بيتونية بمعاملات انتظام للحصويات الخشنة cu متغيرة.
 - تصميم خلطات بيتونية بمعاملات نعومة إسمنت SSC متغيرة.
 - -تحديد قابلية تشغيل البيتون للخلطات المصممة موضوع البحث.

تأمين المواد و إجراء التجارب عليها [55]:

إن إنتاج البيتون عالى الأداء الموافق لمتطلبات قابلية التشغيل المرتفعة و اللزوجة يستلزم فرض قيود أكبر على اختيار المواد مما هو الحال في البيتون العادي.و يمكن القول: إنه ليس من السهل الحصول على مواد محلية بمواصفات جيدة لصنع البيتون، لذلك قمنا بإجراء التجارب الممكنة على الحصويات المستخدمة في مخبر تجريب المواد في كلية الهندسة المدنية. و قد تم اختيار المواد كما يلي:

2-2-الاسمنت:

يعرف الإسمنت بأنه رابط مائي غير عضوي يؤمن التماسك، يشكل عند مزجه بالماء عجينة تتصلب نتيجة تفاعلات الإماهة، ويكتسب مقاومته تدريجياً حتى حدها الاقصى بانتهاء عملية الإماهة، ويحافظ على هذه المقاومة مالم يؤثر عليه عوامل خارجية طارئة.

رغم أن الإسمنت لا يشكل أكثر من (%17-15) من وزن البيتون، إلا أنه المادة الرابطة التي تعمل على ربط جزيئات الهيكل الحصوي بعضها ببعض، و بدونها لا يتشكل البيتون الإسمنتي المعروف. يتم اختيار نوع الإسمنت و عياره بحسب نوع و أهمية و وظيفة و طبيعة المنشأة الهندسية. طبقاً لاشتراطات الكود العربي السوري و المواصفات الفنية العامةالمعمول بها في الجمهورية العربية السورية. و من أجل ذلك تم تصنيف الإسمنت إلى عدة أصناف. ففي نظام اله ASTM الأميركي نميز بين ثمانية أنواع لكل منها مجال استخدامه، و في النظام الفرنسي توجد أصناف عدة لسنا بصدد دراستها حالياً.

أما في سوريا، فقد صنفت المواصفات القياسية السورية رقم (1887) لعام 1997. الإسمنت بحسب تركيبه الله الأنواع التالية [60]:

I - الإسمنت البورتلندي .

II - P - الإسمنت البورتلندي البوزولاني.

II - I - الإسمنت البورتلندي الكلسي.

II - M - الإسمنت البورتاندي المخلوط بالكلس و البوزولانا.

تم استخدام الإسمنت البورتلاندي (CEM I 32 5). في تجارب البحث و هو صنع معمل إسمنت طرطوس.

الشكل (2-1) بعض نماذج أنواع الإسمنت في سوريا

يباع الإسمنت وفق شهادات اختبار نظامية تصدرها المعامل المنتجة و يجب بشكل دائم التأكد من مدى مطابقة الإسمنت المنتج مع الشهادة الممنوحة.

2-2-1-تجربة تحديد صنف الإسمنت:

صنف الإسمنت هي مقاومة المونة الإسمنتية النظامية على الضغط عند عمر (28) يوماً.

• قمنا بتحضير عينات المونة الإسمنتية النظامية (الموضحة بالملحق 1) لقياس صنف الإسمنت المستخدم وفق المقادير التالية:

رمل S= 1350gr، الإسمنت C=450gr، الإسمنت S= 1350gr، ماء

خلاط المونة الإسمنتية

قوالب المونة الموضوعة على حوض حفظ العينات

قوالب المونة الإسمنتية على آلة الرج

الشكل (2-2) بعض أدوات تجربة تحديد صنف الإسمنت.

- بعد تجهيز المونة الإسمنية يتم صب ثلاثة عينات نظامية من المونة في القوالب ذات الأبعاد (16*4*4cm)، ثم تفك القوالب بعد 24 ساعة و توضع في حوض حفظ العينات.
- يتم اختبار العينات بعد 28 يوم على الضغط البسيط و النتائج موضحة في الجدول (2-1): الجدول (2-1): الجدول (2-1) نتائج اختبارات عينات المونة الإسمنية على الضغط البسيط.

المقاومة الوسطية (Kg/cm ²)	Rc ₂₈ (Kg/cm ²)
368	367
	378
	360

أي أن صنف الإسمنت البورتلاندي العادي المستخدم CEM I 32.5 (صنع معمل طرطوس) المصنع وفق المواصفة السورية رقم (1674) لعام 1996. مطابق للتجارب [60]:

2-2-2 تجربة نعومة الإسمنت:

السطح النوعي: يُقصد بالسطح النوعي نعومة الإسمنت معبراً عنها بمجموع المساحة السطحية لجسيمات الإسمنت الموجودة في غرام واحد مقدرة بالسنتمترات المربعة، و تقاس مخبرياً بتطبيق تجربة بلين الموضحة بالملحق 1.

مبدأ الإختبار: يعتمد مبدأ الاختبار على قياس الزمن اللازم لتسرب حجم ثابت من الهواء تحت ضغط معين و درجة حرارة معينة عبر طبقة من الاسمنت في شروط محددة و ذلك بواسطة جهاز بلين الموضح بالشكل (2-2).

الشكل (2-2) جهاز بلين لقياس السطح النوعي للإسمنت.

و للنعومة تأثير كبير على خواص الإسمنت أهمها:

- تزداد الكثافة الظاهرية للإسمنت بازدياد نعومته.
 - تزداد حاجة الإسمنت للماء بازدياد نعومته.
 - تزداد سرعة التصلب بازدياد نعومة الإسمنت.
- تزداد المقاومة على الشد و الضغط بازدياد نعومة الإسمنت.
 - يخف تغير الحجم في الإسمنت بازدياد نعومته.

أولاً: نعومة عينة الإسمنت ذات الصنف $\frac{132.5}{1000}$ صنع معمل طرطوس بتطبيق القانون هي $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ $\frac{1}{1$

<u>ثانباً</u>: تم الحصول على عينات إسمنتية من نفس الصنف السابق CEM I 32.5 صنع معمل طرطوس بنعومة مختلفة بعد طحنها من أجل دراسة تأثير تغير نعومة الإسمنت على أداء الملدن و كانت نتائج تجربة بلين موضحة وفق القيم التالية:

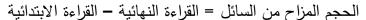
$$SSc_2 = 2500 \text{ cm}^2/\text{gr}$$

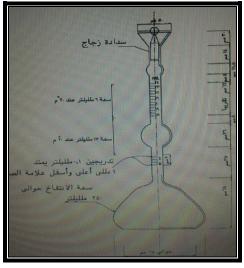
 $SSc_3 = 2800 \text{ cm}^2/\text{gr}$
 $SSc_4 = 3000 \text{ cm}^2/\text{gr}$

و هذه القيم مقبولة إذ إنها ضمن المجال المقبول لنعومة الإسمنت البورتلندي المستخدم في القطر العربي -2500 cm²/gr إذ تتحصر في المجال (1673 cm²/gr) لعام 1996 إذ تتحصر في المجال (3000) [60].

3-2-2- تجربة الوزن النوعي للإسمنت: Specific Density of Cement

الوزن النوعي للإسمنت أي كثافة الأسمنت و هي وزن وحدة الحجوم لحبيبات الإسمنت، و يفيد تحديد كثافة الإسمنت في تصميم الخلطات البيتونية والتحكم في جودتها، و قد تتراوح الكثافة النوعية لمختلف أنواع الإسمنت بين 3.1 إلى 3.2، و يوجد عدة عوامل مؤثرة على الكثافة النوعية للإسمنت:


-التخزين: حيث أن التخزين لفترات طويلة يقلل من الكثافة النوعية بشكل ملحوظ.


-المركبات الكيميائية:الإسمنت الحاوي على أكسيد حديد قد يزيد الكثافة بقيمة تتراوح مابين(0.1-0.05). -نعومة الإسمنت: حبيبات الإسمنت الناعمة تكون كثافتها النوعية أكبر من حبيبات الإسمنت الخشنة و التي لها نفس المكونات و التركيب الكيميائي والظروف.

الهدف من الاختبار:

يهدف الاختبار لتحديد كثافة الإسمنت و ذلك بتحديد وزن وحدة الحجوم من مادة الأسمنت باستخدام قنينة لوشاتليه للكثافة. حيث لا تتص الموصفات على إجراء هذا الاختبار كاختبار قبول أو رفض للإسمنت و لكن يتم تعيين الكثافة للاستفادة منها في تصميم الخلطات البيتونية أو لأي مقارنات بين أنواع الإسمنت المختلفة.

يمثل الفرق بين القراءتين النهائية و الابتدائية على زجاجة لوشاتليه الموضحة في الشكل (2-4) حجم السائل المزاح بعينة الإسمنت المستخدمة في الاختبار و على ذلك:

الشكل (2-4) إناء لوشاتليه لتعيين الوزن النوعى للإسمنت.

تحسب الكثافة النوعية للإسمنت كما يلي:

الكثافة النوعية للإسمنت (gr/cm³) =كتلة الإسمنت (gr) مقسومة على الحجم المزاح من السائل (cm³). و بإجراء تجربة الوزن النوعي للإسمنت في المخبر تبين أن الوزن النوعي للإسمنت صنع معمل طرطوس 3110- kg/m³.

2-3-خواص المواد الحصوية المستعملة في البيتون:

تقضي المواصفات العالمية أن تكون خواص المواد الحصوية المستعملة في البيتون خاملة كيميائياً و أن تتحمل العوامل الطبيعية و أن تكون قاسية ذات سطوح خشنة و يفضل منها ذات المكسر الحديث والنظيف، و أن يكون شكل حباتها مكعبياً أو قريباً من المكعب و يستبعد الشكل الصفائحي أو الإبري للحبات و يجب أن تعطي تلاصقاً جيداً مع المونة الإسمنتية كما يجب أن تكون خالية من المواد العضوية [61].

البحص المستخدم في هذه التجارب هو من إنتاج محلي من مقالع منطقة حسية السورية. تم فصل البحص (باستعمال عمود المناخل المرتبة من الأخشن إلى الأنعم مع الاستعانة بالرج الآلي لسلسلة المناخل) إلى:

بحص خشن: Dmax=37.5mm

بحص خشن: Dmax=25mm

بحص خشن: Dmax=19mm

بحص ناعم: Dmax=12.5mm

أما الرمل المستخدم فهو مزيج من الرمل الخشن من منطقة مرقية (أقطاره: 0-5mm)، والناعم من

منطقة النبك (أقطاره: 0-1mm).

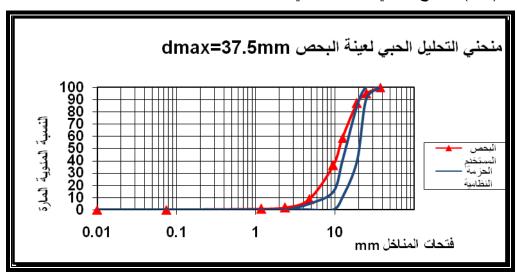
الشكل (2-5)عينات الحصويات المستخدمة في البحث.

4-2 التجارب المجراة على المواد الحصوية:

بالعودة إلى الملحق (1) يمكن الاطلاع على تفاصيل التجارب كافة.

2-4-1-تجربة التحليل الحبي الميكانيكي بواسطة المناخل (بالطريقة الجافة):

Sieve Analysis of Coarse Aggregates ASTM C 136


: Dmax=37.5mm الحبي للبحص الخشن الحبي للبحص الخشن

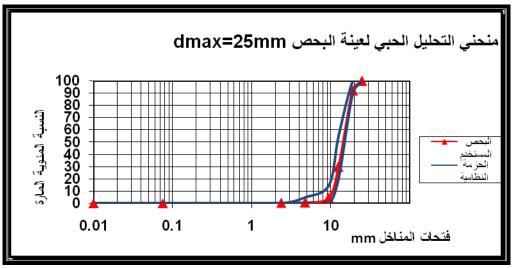
Sieve Analysis of Coarse Aggregates ASTM C 136

يبين الجدول (2-2) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=37.5mm. الجدول (2-2) نتائج التحليل الحبي لعينة البحص الخشن

D	نتائج التحليل الحبي لعينة البحص الخشن Dmax=37.5mm				
النسبة المئوية	النسبة المئوية	النسبة المئوية	(-) == t1 . • t1	(\ t · · t i i rå	
المارة (%)	التكاملية المتبقية(%)	المتبقية(%)	الورن المنب <i>قي</i> (g)	فتحة المنخل (mm)	
100	0	0	0	37.5	
94.00753	5.992467	5.992466613	420	25	
86.2744	13.7256	7.733135487	542	19	
55.83837	44.16163	30.43602329	2133.2	12.5	
35.03595	64.96405	20.80241982	1458	9.5	
8.754708	91.24529	26.28124643	1842	4.75	
1.906175	98.09382	6.848533272	480	2.36	
0.699121	99.30088	1.207053989	84.6	1.18	
0	100	0.699121105	49	0.075	
0	100	0	0	القعر	
			7009	المجموع	

أما الشكل (6-2) يوضح منحني التحليل الحبي لعينة البحص Dmax=37.5mm:

الشكل(2-6) منحني التحليل الحبي لعينة البحص Dmax=37.5mm


: Dmax=25mm الخشن: ك-1-4-2-التحليل الحبي للبحص الخشن: Sieve Analysis of Coarse Aggregates ASTM C 136

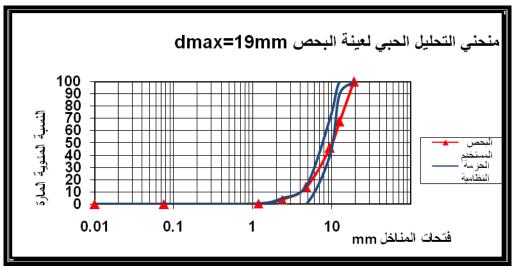
يبين الجدول (2-3) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=25mm:

الجدول (2-2) نتائج التحليل الحبي لعينة البحص الخشن Dmax=25mm .

I	نتائج التحليل الحبي لعينة البحص الخشن Dmax=25mm				
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتبقية(%)	الوزن المتبقي (g)	فتحة المنخل (mm)	
100.00	0.00	0.00	0.00	25	
94.22	5.78	5.78	258.62	19	
27.03	72.97	67.19	3008.86	12.5	
3.36	96.64	23.67	1060.06	9.5	
0.62	99.38	2.74	122.56	4.75	
0.18	99.82	0.45	20.00	2.36	
0.00	100.00	0.18	7.90	0.075	
0.00	100.00	0.00	0.00	القعر	
			4478	المجموع	

أما الشكل (2-7) يوضح منحني التحليل الحبي لعينة البحص (7-2)

الشكل (7-2) منحنى التحليل الحبى لعينة البحص Dmax=25mm


: Dmax=19mm الخشن: الحبي للبحص الخشن: 3-1-4-2 Sieve Analysis of Medium Aggregates ASTM C 136

يبين الجدول (2-4) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=19mm:

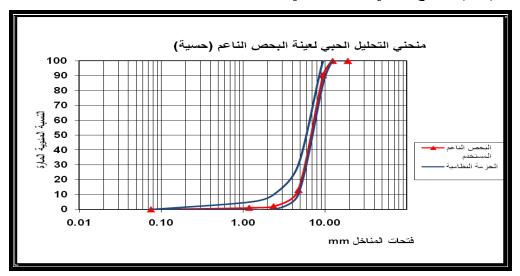
الجدول (2-4) نتائج التحليل الحبى لعينة البحص الخشن Dmax=19mm .

I	نتائج التحليل الحبي لعينة البحص الخشن Dmax=19mm				
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية (%)	النسبة المئوية المتبقية(%)	الوزن المتبقي (g)	فتحة المنخل (mm)	
100	0.00	0.00	0	19	
67.5	32.5	32.5	1563.9	12.5	
46	54	21.5	1034.58	9.5	
14	86	32	1539.84	4.75	
3.7	96.3	10.3	495.6	2.36	
0.5	99.5	3.2	153.98	1.18	
0	100	0.5	24.06	0.075	
0	100.00	0	0.9	القعر	
			4812	المجموع	

أما الشكل (2-8) يوضح منحني التحليل الحبي لعينة البحص Dmax=19mm:

الشكل(2-8) منحنى التحليل الحبى لعينة البحص Dmax=19mm.

: Dmax= 12.5mm. التحليل الحبى للبحص الناعم


Sieve Analysis of Fine Aggregates ASTM C 136

يبين الجدول (2-5) نتائج التحليل الحبي لعينة البحص الناعم المختارة للبحث Dmax=12.5mm:

الجدول (2-5) نتائج التحليل الحبي لعينة البحص الناعم. Dmax= 12.5mm

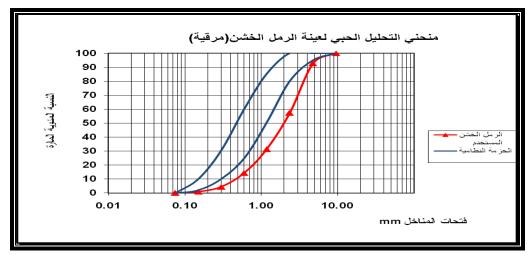
I	نتائج التحليل الحبي لعينة البحص الناعم.Dmax= 12.5mm				
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية (%)	النسبة المئوية المتبقية (%)	الوزن المتبقي (g)	فتحة المنخل (mm)	
100.00	0.00	0.00	0	19	
100.00	0.00	0.00	0	12.5	
90.32	9.68	9.68	238.1	9.5	
12.97	87.03	77.36	1903.6	4.75	
2.09	97.91	10.88	267.7	2.36	
1.04	98.96	1.04	25.7	1.18	
0.04	99.96	1.00	24.6	0.075	
0.00	100.00	0.04	1.1	القعر	
			2476.3	المجموع	

أما الشكل (9-2) يوضح منحني التحليل الحبي لعينة البحص (9-2)

الشكل (9-2) منهني التحليل الحبي لعينة البحص الناعم. Dmax= 12.5mm

2-4-1-5-التحليل الحبى للرمل الخشن:

Sieve Analysis of CrushedRUSHED SAND ASTM C 136


يبين الجدول (2-6) نتائج التحليل الحبي لعينة الرمل الخشن (رمل مرقية) المختارة للبحث: الجدول (2-6) نتائج التحليل الحبي لعينة الرمل الخشن

	نتائج التحليل الحبي لعينة الرمل الخشن			
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتبقية(%)	الوزن المتبقي (g)	فتحة المنخل (mm)
100.00	0.00	0.00	0.00	9.5
92.79	7.21	7.21	90.20	4.75
57.30	42.70	35.50	444.40	2.36
31.19	68.81	26.10	326.80	1.18
14.35	85.65	16.85	210.90	0.6
4.35	95.65	10.00	125.20	0.3
0.89	99.11	3.45	43.20	0.15
0.00	100.00	0.89	11.20	0.075
0.00	100.00	0.00	0.00	القعر
			1263.1	المجموع
mf =3.99				معامل النعومة

تم تحديد قيمة معامل النعومة mf وفق القانون التالي:

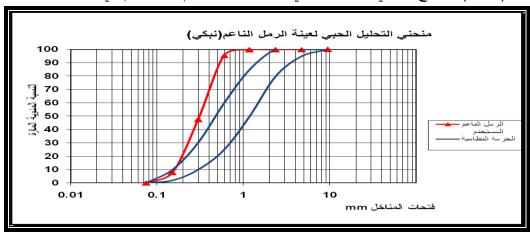
مجموع النسب التكاملية (من المنخل محموع النسب التكاملية (من المنخل محموع)

أما الشكل (2-10) يوضح منحني التحليل الحبي لعينة الرمل الخشن المستخدم في البحث:

الشكل (2-10) منحنى التحليل الحبى لعينة الرمل الخشن.

2-4-1-6-التحليل الحبى للرمل الناعم:

Sieve Analysis of FINE SAND ASTM C 136


يبين الجدول (2-7) نتائج التحليل الحبي لعينة الرمل الناعم (رمل نبكي) المختارة للبحث: الجدول (2-7) نتائج التحليل الحبي لعينة الرمل الناعم.

	نتائج التحليل الحبي لعينة الرمل الناعم			
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتبقية(%)	الوزن المتبقي (g)	فتحة المنخل (mm)
100.00	0.00	0.00	0	9.5
99.96	0.04	0.04	0.3	4.75
99.86	0.14	0.10	0.7	2.36
99.79	0.21	0.07	0.5	1.18
95.58	4.42	4.21	30.8	0.6
47.46	52.54	48.12	351.8	0.3
7.96	92.04	39.50	288.8	0.15
0.07	99.93	7.89	57.7	0.075
0.00	100.00	0.7	0.5	القعر
			2476.3	المجموع
	mf =1.49			

تم تحديد قيمة معامل النعومة mf وفق القانون التالى:

مجموع النسب التكاملية (من المنخل محموع النسب التكاملية (من المنخل

أما الشكل (2-11) يوضح منحني التحليل الحبي لعينة الرمل الناعم المستخدم في البحث:

الشكل(2-11) منحنى التحليل الحبى لعينة الرمل الناعم.

2-4-2-تحديد معامل انتظام الحصويات الخشنة

Uniformity coefficient of coarse Aggregtes

يعرف معامل انتظام الحصويات: بأنه النسبة بين القطر الموافق للنسبة المارة 60% إلى القطر الموافق للنسبة المارة 10% أي[61]:

Cu=
$$\frac{D60}{D10}$$

يتم تحديد معامل انتظام الحصويات بالاعتماد على تجربة التحليل الحبي و استنتاج القيمة Cu منحني التحليل الحبي للعينية المدروسة ،حيث تعتبر الأقطار D60 وD10 كأقطار فعلية في حساب المعامل على اعتبار القطر أن D60 يعطي قراءة لقياس أقطار البحص الخشن في حين أن القطر D10 يعطى قراءة لقياس أقطار النواعم.

و من خلال معامل انتظام الحصويات Cu يمكن التعرف على أشكال و أنواع المنحني الحبي وفق مايلي:

1-المنحني الحبي المستمر أو المنحني جيد التدرج:

تتواجد حبيبات الحصويات بكافة الإقطار خشنة و متوسطة و ناعمة، و بنسب متقاربة من بعضها Cu>4، و يعتبر أفضل أنواع المنحنى الحبى كافة الأعمال الهندسية.

2-المنحنى الحبى متوسط التدرج:

يدعى أيضاً بالمنحني المتدرج بشكل محدود التدرج، 4> 1<Cu و يدل على وجود حبيبات خشنة و متوسطة و ناعمة، و لكن بنسب متفاوتة من بعضها و يمكن استخدامه في كافة الأعمال الهندسية.

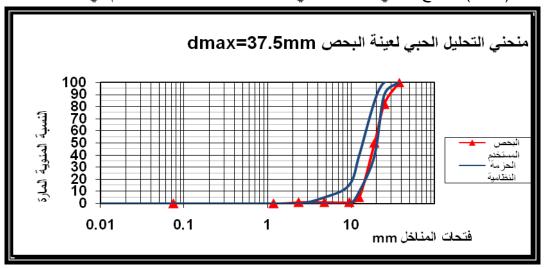
<u>3-المنحنى الحبى منتظم التدرج(وحيد التدرج):</u>

يكون المنحني عادة ذو ميل شديد و قريب من الخط الشاقولي Cu=1، حيث كافة حبيبات المنحني من نفس القطر أو أن مجال تغيير الأقطار فيها ضعيف جداً، و يعتبر غير مرغوب به في أغلب الأعمال الهندسية.

4-المنحني المتقطع التدرج:

يدعى أيضاً بالمنحني سيء التدرج، بالرغم من أن 1<Cu و يدل على وجود حبيبات خشنة فيه وحبيبات ناعمة أما المتوسطة فهي قليلة جداً أو معدومة، و يجب تعديل المنحني ليصبح صالحاً للاستعمال في البيتون.

يجب أن تحقق الحصويات تدرجاً حبياً مناسباً يؤمن اكتنازاً جيداً للبيتون و قابلية تشغيل جيدة له في الحالة الطرية.


تم اختيار عينات من البحص الخشن Dmax=37.5mm متغيرة التدرج و تختلف فيها قيمة Cu لدراسة تأثير معامل انتظام الحصويات الخشنة على أداء الملدن في الخلطة البيتونية موضوع البحث.

2-4-2-1-تحديد معامل انتظام لعينة البحص الخشن الأولى Dmax=37.5mm:

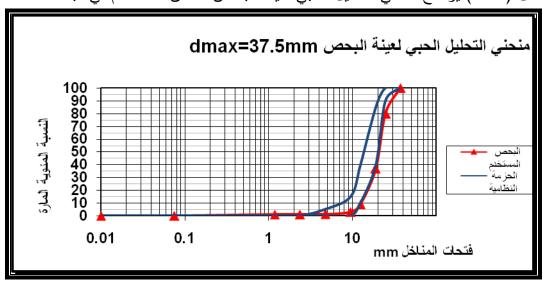
يبين الجدول (2-2) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=37.5mm. الجدول (2-2) نتائج التحليل الحبي لعينة البحص الخشن الأولى

	نتائج التحليل الحبي لعينة البحص الخشن			
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتبقية(%)	الوزن المتبقي (g)	فتحة المنخل (mm)
100	0	0	0	37.5
82	18	18	1261.796	25
50	50	32	2243.194	19
5	95	45	3154.491	12.5
1	99	4	280.3992	9.5
1	99	0	0	4.75
1	99	0	0	2.36
0	100	1	70.0998	1.18
0	100	0	0	0.075
0	100	0	0	القعر
			7010	المجموع

أما الشكل (2-21) يوضح منحني التحليل الحبي لعينة البحص الخشن المستخدم في البحث:

الشكل(2-21) منحنى التحليل الحبى لتحديد معامل انتظام عينة البحص الأولى Dmax=37.5mm

تحسب قيمة معامل انتظام الحصويات بالاعتماد على المنحني الحبي السابق (2-11):


Cu1=
$$\frac{D60}{D10}$$
= 1.33

2-2-4-2 تحديد معامل انتظام لعينة البحص الخشن الثانية Dmax=37.5mm:

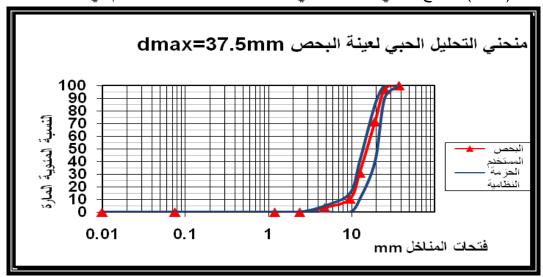
يبين الجدول (9-2) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=37.5mm . الجدول (9-2) نتائج التحليل الحبي لعينة البحص الخشن الثانية

	نتائج التحليل الحبي لعينة البحص الخشن				
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتبقية(%)	الوزن المتبقي (g)	فتحة المنخل (mm)	
100	0	0	0	37.5	
80	20	20	1401.996	25	
37	63	43	3014.291	19	
9	91	28	1962.794	12.5	
3	97	6	420.5988	9.5	
1.2	98.8	1.8	126.1796	4.75	
1.1	98.9	0.1	7.00998	2.36	
1	99	0.1	7.00998	1.18	
0	100	1	70.0998	0.075	
0	100	0	0	القعر	
			7010	المجموع	

أما الشكل (2-13) يوضح منحني التحليل الحبي لعينة البحص الخشن المستخدم في البحث:

الشكل(2-13) منحنى التحليل الحبى لتحديد معامل انتظام عينة البحص الثانية Dmax=37.5mm

تحسب قيمة معامل انتظام الحصويات بالاعتماد على المنحني الحبي السابق (2-12):


Cu2=
$$\frac{D60}{D10}$$
= 1.62

2-2-4-2 تحديد معامل انتظام لعينة البحص الخشن الثالثة Dmax=37.5mm:

يبين الجدول (10-2) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=37.5mm . Dmax=37.5mm .

	نتائج التحليل الحبي لعينة البحص الخشن			
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتبقية (%)	الوزن المتبقي (g)	فتحة المنخل (mm)
100	0	0	0	37.5
93.93722	6.062785	6.062785	425	25
68.43722	31.56278	25.5	1787.5449	19
27.93722	72.06278	40.5	2839.0419	12.5
7.437215	92.56278	20.5	1437.0459	9.5
1.968608	98.03139	5.468608	383.3483	4.75
0	100	1.968608	137.999	2.36
0	0 100		0	1.18
0	100	0	0	0.075
0	100	0	0	القعر
			7010	المجموع

أما الشكل (2-14) يوضح منحني التحليل الحبي لعينة البحص الخشن المستخدم في البحث:

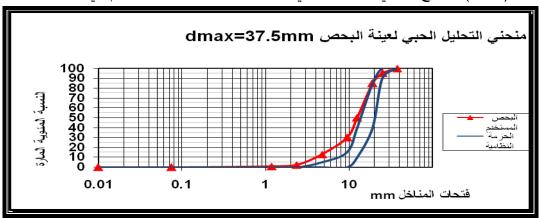
الشكل(2-14) منحنى التحليل الحبي لتحديد معامل انتظام عينة البحص الثالثة Dmax=37.5mm

تحسب قيمة معامل انتظام الحصويات:بالاعتماد على المنحني الحبي السابق (2-13):

Cu3=
$$\frac{D60}{D10}$$
= **1.96**

4-2-4-2 تحديد معامل انتظام لعينة البحص الخشن الرابعة Dmax=37.5mm:

تحسب قيمة معامل انتظام الحصويات لعينة البحص الرابعة بالاستفادة من نتائج التحليل الحبي لعينة البحص الواردة في الجدول (2-2) و المنحني الحبي (2-5) السابقين:


Cu4=
$$\frac{D60}{D10}$$
= 2.57

5-2-4-2 تحديد معامل انتظام لعينة البحص الخشن الخامسة Dmax=37.5mm:

يبين الجدول (11-2) نتائج التحليل الحبي لعينة البحص الخشن المختارة للبحث Dmax=37.5mm. الجدول (11-2) نتائج التحليل الحبي لعينة البحص الخشن الخامسة

	نتائج التحليل الحبي لعينة البحص الخشن			
النسبة المئوية المارة (%)	النسبة المئوية التكاملية المتبقية(%)	النسبة المئوية المتوية المتبقية (%)	الوزن المتبقي (g)	فتحة المنخل (mm)
100	0	0	0	37.5
94.42938	5.570615	5.570615	390.499	25
84.42938	15.57062	10	700.998	19
49.42938	50.57062	35	2453.493	12.5
29.42938	70.57062	20	1401.996	9.5
12.42938	87.57062	17	1191.697	4.75
1.914692	98.08531	10.51469	737.0778	2.36
0.8	99.2	1.114692	78.13972	1.18
0	100	0.8	56.07984	0.075
0	0 100		0	القعر
			7010	المجموع

أما الشكل (2-15) يوضح منحني التحليل الحبي لعينة البحص الخشن المستخدم في البحث:

الشكل (2-15) منحنى التحليل الحبى لتحديد معامل انتظام عينة البحص الخامسة Dmax=37.5mm

تحسب قيمة معامل انتظام الحصويات:بالاعتماد على المنحنى الحبي السابق (2-14):

Cu5=
$$\frac{D60}{D10}$$
= 3.75

3-4-2 تحديد معامل نعومة الرمل: Module Fineness

تدل قيمة معامل النعومة mf للرمل على الخشونة أو النعومة النسبية التي تتمتع بها حبيباته فهي بشكل أو بآخر تعطي فكرة عن المقاس الوسطي للأقطار من أصغرها إلى أكبرها لذلك يعمد إلى دراسة التدرج الحبى و تحسب قيمة معامل النعومة mf وفق القانون التالى:

مجموع النسب المئوية التكاملية المحجوزة على كل منخل من مناخل الحصويات القياسية للرمل و هي مجموع النسب المئوية التكاملية المحجوزة على كل منخل من مناخل الحصويات القياسية للرمل و هي (0.15-0.3-0.6-1.18-2.36-4.75mm)

يعبر معامل النعومة عن الحجم المتوسط لحبيبات الرمل و لا يدل على مدى التدرج الحبى للرمل.

و يستخدم معامل النعومة في عدة طرق لتصميم الخلطة البيتونية كالطريقة الفرنسية Dreux Gorrisse التي سوف يتم توضيحها لاحقاً و تتراوح .قيم معامل النعومة للرمل بين (4-1.5).

و يصنف الرمل حسب معامل النعومة إلى [53,61]:

- رمل ناعم جداً (1.5.< mf < 2).
 - رمل ناعم (2.6 mf < 2.6).
- رمل متوسط (2.8 < 2.6).
 - رمل خشن (mf < 3.2).

تم الاستفلاة من نتائج التحليل الحبي الواردة في الجدول السابق (6-6) لحساب قيمة معامل النعومة لعينة رمل مرقية المستخدمة في البحث $\mathbf{mf} = 3.99$ حيث يصنف رمل مرقية المستخدمة في البحث

و تم الاستفلاة أيضاً من نتائج التحليل الحبي الواردة في الجدول السابق (2-7) لحساب قيمة معامل النعومة لعينة الرمل النبكي المستخدمة في البحث $\mathbf{mf} = 1.49$ حيث يصنف الرمل النبكي بالناعم.

تم تصميم مزيج رملي (رمل مرقية و رمل نبكي) للحصول على عينات من الرمل المزيج متدرجة النعومة و مختلفة بقيمة mf لدراسة تأثير معامل نعومة الرمل على أداء الملدن في الخلطة البيتونية موضوع البحث.

4-4-2-تجربة لوس انجلوس لتعيين الفاقد بالاهتراء للمواد الحصوية: AASHTO T96-77

الغاية من التجربة:

تعيين الفاقد بالاهتراء لعينة المواد الحصوية التي تستعمل في أعمال البيتون أو الطرق و بالتالي معرفة مدى مقاومة عينات البحص للتآكل بالانسحاق، أي حساب عامل التآكل أو الاهتراء للبحص.

النتائج:

بعد إجراء التجربة حصلنا على النتائج التالية:

-وزن العينة للبحص المكسر الخشن (10-25mm) وزن العينة للبحص المكسر

-الوزن المتبقى للبحص المكسر الخشن على المنخل g : Wf

قيمة عامل لوس انجلوس للبحص الخشن:

LA=(5000-4125)/5000 = **17.5%**

 $5000 \text{ g}: W_0 (5-12.5 \text{ mm})$ وزن العينة للبحص المكسر الناعم

-الوزن المتبقى للبحص المكسر الناعم على المنخل Wf : الوزن المتبقى البحص المكسر الناعم على المنخل على المنطق

قيمة عامل لوس انجلوس للبحص الناعم:

LA = (5000 - 4145)/5000 = 17.1%

و بالتالي يعد البحص المختبر مقبول في أعمال البيتون الإسمنتي و البيتوميني وذلك لأن عامل لوس انجلوس أقل من 30%.

الشكل (2-16)جهاز لوس انجلوس و العينة مع الكرات قبل وضعها فيه.

2-4-2-تجربة المعادل (المكافئ) الرملي Sand Equivalent test:

الغاية من التجربة:

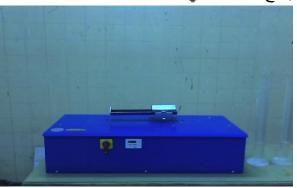
تعيين نسبة الرمل النظيف الموجود في عينة رملية تحوي على الشوائب والمواد الغضارية و ذلك لتحديد صلاحية الرمل للأعمال الهندسية (بيتون إسمنتي، بيتون بيتوميني، طبقات رصف).

النتائج: كما جاء في توصيات التجربة قمنا بإجراء الكثير من التجارب لتعيين قيمة المعادل الرملي للرمل المستخدم في بحثنا و قد جاءت النتائج على النحو التالي:

• نتائج تجربة المكافئ الرملي على الرمل العدسي (مرقية) مدونة في الجدول (2-12): الجدول (2-12) نتائج تجربة المكافئ الرملي لعينة الرمل العدسي (مرقية)

3	2	1	ارقام أنابيب الاختبار
3.75	3.9	4.1	المستوى الأعلى للغضار (H)
3.68	3.7	3.8	المستوى الأعلى للرمل(h)
98.1	94.9	92.7	المكافئ الرملي
95%			المكافئ الرملي الوسطي

و بالتالي فإن E.S=95>80 فالرمل العدسي المستخدم في البحث نظيف جداً و يصلح للاستخدام في إنتاج البيتون عالي المقاومة أو أنواع خاصة من البيتون.


• نتائج تجربة المكافئ الرملي على الرمل النبكي مدونة في الجدول (2-13):

الجدول (2-13) نتائج تجربة المكافئ الرملي لعينة الرمل النبكي .

3	2	1	ارقام انابيب الاختبار
5.8	5.8	5.65	المستوى الأعلى للغضار (H)
4.10	4	4.15	المستوى الاعلى للرمل(h)
70.69	68.97	73.45	المكافئ الرملي
71%			المكافئ الرملي الوسطي

و بالتالي فإن ES=71<80 فالرمل النبكي المستخدم في البحث نظيف نوعاً ما و يصلح للاستخدام في إنتاج البيتون عالى المقاومة

أنابيب الاختبار

جهاز الرج

الشكل (2-17) بعض أدوات تجربة المكافىء الرملي

2-4-4-تجربة قياس الوزن الحجمي (الظاهري والصلب)للمواد الحصوية الخشنة والناعمة:

Specific gravity of coarse aggregat Specific gravity of fine aggregates **ASTM C 127-77 ASTM C 128-73 AASHTO T 85-77 AASHTO T 84-77**

الغاية من التجربة:

ρα و الصلبة ρs لكل من البحص و الرمل

يهدف هذا الاختبار إلى قياس الكتل الحجمية الظاهرية المستخدمين.

2-4-4-الوزن الحجمى الظاهري للبحص الخشن:

V=3I

في المرة الثالثة: W3=4056 gr

و بالتالي تكون القيمة الوسطية:

$$\rho a = \frac{1.38 + 1.36 + 1.35}{3} = 1.36 gr/cm3$$

2-4-2-الوزن الحجمى الظاهري للبحص الناعم:

V = 31

المرة الاولى: W1= 4168 gr

$$ho$$
 وه2 =4122/3000= 1.37 gr/cm3 في المرة الثانية: W2= 4122 g

في المرة الثالثة: W3=4188 gr للمرة الثالثة: pa3= 4188/3000= 1.4 gr/cm2 W3=4188 gr

و بالتالي تكون القيمة الوسطية:

$$\rho a = \frac{1.37 + 1.39 + 1.4}{3} = 1.39 \, gr / cm3$$

2-4-4-3-الوزن الحجمي الصلب للبحص الخشن:

$$\begin{cases} M1 = 640gr \\ M2 = 274gr, M3 = 812g \end{cases} \Rightarrow \rho s = \frac{274}{640 + 274 - 812} = 2.69 : في المرة الأولى:
$$\begin{cases} M1 = 642gr \\ M2 = 274gr, M3 = 813gr \end{cases} \Rightarrow \rho s = \frac{274}{642 + 274 - 813} = 2.66 : example 2.66$$

$$\begin{cases} M1 = 638gr \\ M2 = 210gr, M3 = 770gr \end{cases} \Rightarrow \rho s = \frac{210}{638 + 210 - 770} = 2.69 : example 2.69$$$$

و بالتالي تكون القيمة المتوسطة:

$$\rho s = \frac{2.69 + 2.66 + 2.69}{3} = 2.68$$

2-4-4-1 الوزن الحجمي الصلب للبحص الناعم:

$$\begin{cases} M1 = 640gr \\ M2 = 118gr, M3 = 713g \end{cases} \Rightarrow \rho s = \frac{118}{640 + 118 - 713} = 2.62 : 620$$
 في المرة الأولى:
$$\begin{cases} M1 = 638gr \\ M2 = 106gr, M3 = 703g \end{cases} \Rightarrow \rho s = \frac{106}{638 + 106 - 703} = 2.59 : 638$$
 في المرة الثانية:
$$\rho s = \frac{638}{638 + 106 - 703} = 2.75 : 638$$
 في المرة الثالثة:
$$\rho s = \frac{638}{638 + 110 - 708} = 2.75 : 638$$
 بالتالي تكون القيمة في المرة الثالثة:
$$\rho s = \frac{638}{638 + 110 - 708} = 2.75 : 638$$

$$\rho s = \frac{2.62 + 2.59 + 2.75}{3} = 2.65$$

2-4-4- المسامية والاكتناز للبحص الخشن:

$$c = \frac{\rho a}{\rho s} = \frac{1.36}{2.68} = 0.51$$
$$p = 1 - c = 1 - 0.51 = 0.49$$

2-4-6-6-المسامية و الاكتناز للبحص الناعم:

$$c = \frac{\rho a}{\rho s} = \frac{1.39}{2.65} = 0.52$$
$$p = 1 - c = 1 - 0.52 = 0.48$$

2-4-4-7-الوزن الحجمى الظاهري للرمل الخشن:

V=1L

المتوسطة:

$$\rho a = \frac{1.39 + 1.44 + 1.42}{3} = 1.42 gr/cm3$$
 : item is a substitution of the substi

2-4-4-8-الوزن الحجمي الظاهري للرمل الناعم:

V=1L

وفي المرة الثانية:
$$W2=1570/1000=1.57~gr/cm3$$
 ي المرة الثانية: $W3=1565/1000=157~gr/cm2$ ي المرة الثانثة: $W3=1565~gr$ ي المرة الثانثة: $W3=1565~gr$ ي المرة الثانثة: $Pa=\frac{1.56+1.57+1.57}{3}=1.57~gr/cm3$

2-4-4-والوزن الحجمى الصلب للرمل الخشن:

$$\begin{cases} M1 = 198gr \\ M2 = 78gr, M3 = 246g \end{cases} \Rightarrow \rho s = \frac{78}{198 + 78 - 246} = 2.6 : في المرة الأولى:
$$\begin{cases} M1 = 208gr \\ M2 = 42gr, M3 = 234gr \end{cases} \Rightarrow \rho s = \frac{42}{208 + 42 - 234} = 2.63 :$$
في المرة الثانية:
$$\begin{cases} M1 = 210gr \\ M2 = 60gr, M3 = 246gr \end{cases} \Rightarrow \rho s = \frac{60}{210 + 60 - 246} = 2.5 :$$$$

و بالتالى تكون القيمة المتوسطة:

$$\rho s = \frac{2.6 + 2.63 + 2.5}{3} = 2.58$$

2-4-4-10-الوزن الحجمي الصلب للرمل الناعم:

$$egin{align*} M1 = 208gr \ M2 = 36gr, M3 = 230g \end{pmatrix} \Rightarrow
ho s = rac{36}{208 + 36 - 230} = 2.57 :$$
 في المرة الأولى: $S = \frac{10}{208 + 36 - 230} = 2.57 :$ في المرة الثانية: $S = \frac{20}{210 + 20 - 222} = 2.5 :$ في المرة الثانية: $S = \frac{20}{210 + 20 - 222} = 2.55 :$ في المرة الثالثة: $S = \frac{28}{212 + 28 - 229} = 2.55 :$

و بالتالى تكون القيمة المتوسطة:

$$\rho s = \frac{2.57 + 2.5 + 2.55}{3} = 2.54$$

2-4-4-11-المسامية والاكتناز للرمل الخشن:

$$c = \frac{\rho a}{\rho s} = \frac{1.42}{2.58} = 0.55$$
$$p = 1 - c = 1 - 0.55 = 0.45$$

2-4-4-11-المسامية و الاكتناز للرمل الناعم:

$$c = \frac{\rho a}{\rho s} = \frac{1.57}{2.54} = 0.62$$
$$p = 1 - c = 1 - 0.62 = 0.38$$

2-5-خواص الإضافات الكيميائية المستعملة في البيتون:

تعرف الإضافات الكيميائية بأنها مواد بشكل سائل أو بودرة تضاف إلى البيتون بكميات قليلة لتحسين بعض خواصه في حالتيه الطرية والصلبة و تضاف دوماً وفق نشرات رسمية تصدرها الشركات الصانعة، لذلك ينصح قبل استعمال هذه المواد أن تدرس النشرات المرفقة بشكل جيد.

حيث استخدمنا في عملنا التجريبي ملدن عالي الفعالية مصنع من مواد كيميائية خاصة خالية من الكلور و من النترات تم الحصول عليه من شركة متخصصة بكيماويات البناء .

2-5-1-وصف المنتج:

ملدن عالي الفعالية خافض بشكل كبير لنسبة الماء إلى الإسمنت خال من الكلور و هو مطابق المواصفات الأمريكية ASTM C494-TYPE F

2-5-2-مجالات الاستعمال:

- البيتون المجبول في المجابل المركزية.
 - البيتون المجبول في الموقع.
 - بيتون مسبق الصنع.

في أي مكان نحتاج بيتون ذي مواصفات عالية و صحيحة (الأبنية،الجسور، خزانات الماء، الصوامع، الأرضيات، بيتون القشريات، بيتون المنشآت المائية).

2-5-2 فوائد الاستعمال:

- يزيد من قابلية تشغيل البيتون مع الحفاظ على نسبة الماء إلى الاسمنت و هذا الأمر مهم في
 صب البيتون المسلح بالمضخات و رج البيتون ضمن القالب بوجود فولاذ التسليح.
- يخفض نسبة الماء إلى الإسمنت بحيث تصل إلى نسبة (32%) عند إضافة نسبة (1.2%) من وزن الاسمنت.
- يزيد من المقاومة المبكرة للبيتون و يزيد من المقاومة النهائية للبيتون بعد
 الكسر و الشد بالانعطاف).
 - يزيد من اكتتاز البيتون و بالتالي يزيد من كتامته.

2-5-4-نسبة الإضافة:

• يجب إجراء تجارب مخبرية و تجارب حقلية لتحديد النسبة المثالية، و لكن يمكن إضافة الملدن بنسبة وزنية (4%-0.6) من وزن الإسمنت المستخدم في للبيتون الكلاسيكي.

2-5-5-التأثيرات السلبية عند الزيادة في إضافة الملدن:

إن الزيادة في نسبة الملدن ينتج عنه مايلي:

1-الزيادة في قابلية التشغيل.

2-التأخير في زمن التجمد و التصلب النهائي.

و في كل الأحوال هذه الكمية الزائدة لاتؤثر على مقاومة البيتون سلباً و لكن يجب عدم إضافة أي كمية زائدة دوماً (مع وجوب ملاحظة أن زيادة النسبة تبقى فعالة إيجاباً إلى حد معين تصبح بعده ذات تأثير سلبي على المقاومة و هذا الحد يعرف بنسبة الإشباع و يحدد تجريبياً).

6-2-خواص الماء المستعمل في البيتون:

من المعروف دائماً أن الماء المستعمل في البيتون هو ماء الشرب وماعداه لا يجوز استعماله إلا أن النتائج التي توصل إليها (ABRAMS) من خلال دراسته تأثير (68) نوعاً من المياه على البيتون ،إن اللون و الرائحة لايحددان صلاحية الماء للبيتون و إنما الذي يحدد صلاحية الماء للبيتون مجموعة من التجارب اعتمدت فيما بعد في معظم الأنظمة العالمية . نورد فيما يلي خواص ماء الجبل بحسب ما جاء في الكود العربي السوري بعام 2004:

- 1. أن يكون الماء المستعمل في جبل البيتون نظيفاً و خالياً من المواد الضارة مثل الزيت والحموض والقلويات و الأملاح الأخرى التي تؤثر تأثيراً متلفاً على البيتون أو قضبان التسليح.
- 7. يشترط في الماء ألا تزيد أملاح الكلوريدات الذائبة فيه عن (0.5g/l) و أملاح الكبريت عن (0.3g/l).
 - ٣. إن الماء الصالح للشرب صالح في جميع الأحوال لخلط البيتون.
 - ٤. يمكن استعمال الماء غير الصالح للشرب في خلط البيتون إذا كان:
- زمن بدء التجمد لعينات الإسمنت المصنوعة بهذا الماء لايزيد بأكثر من (30min) على زمن التجمد الابتدائي لعينات نفس الإسمنت المستخدم بالماء الصالح للشرب و بحيث لايقل زمن التجمد الابتدائي عن (45 min) بأى حال.
 - مقاومة الضغط بعد 7 و 28 يوماً للعينات النظامية التي يستعمل في خلطها مثل هذا الماء لاتقل عن 90% من مقاومة الضغط لعينات مماثلة جهزت بماء صالح للشرب.
 - ٥. لا عيمح باستخدام ماء البحر في جبل البيتون المسلح و إن كان يجوز استعماله عند الضرورة في البيتون العادي بدون تسليح مع زيادة كمية الإسمنت للوصول إلى الدرجة المطلوبة في مقاومة البيتون.

دلت بعض الدراسات التجريبية أن ماء الجبل الصالح للشرب المنحل فيه غاز الكربون قد يسبب بعض الأضرار في بنية البيتون عندما تكون المواد الحصوية المستعملة في هذا البيتون من نوع الحجر الكلسي. نظراً لأن متطلبات نوعية الماء في البيتون عالي الأداء لا تختلف عنها في البيتون العادي فقد استعملنا الماء العادي الصالح للشرب.

2-7-تصميم الخلطة البيتونية:

رغم التقدم العلمي الكبير في مجال تكنولوجيا البيتون فإنه لاتوجد طريقة ثابتة نظامية خاصة بتركيب الخلطة البيتونية و إنما جميع هذه الطرق هي طرق تجريبية تعتمد على فرضيات معينة غايتها جميعاً تشكيل بيتون سهل التنفيذ و بأقل طاقة رص ممكنة و يعطي مقاومة ميكانيكية عالية و كتيم نسبياً.

الغاية من تصميم الخلطة البيتونية:

إن الغاية من تركيب أو تصميم الخلطة البيتونية هي البحث في تعيين النسب المئوية المثالية لمجموعة المواد الداخلة في تركيب البيتون بغية الحصول على بيتون بقابلية تشغيل مناسبة تتلائم مع أهمية وطبيعة و نوع المنشأة المراد تتفيذها بحيث يمكن وضع البيتون في القالب بشكل جيد و سهل و أن تعطي مقاومة تتناسب مع نوع البيتون المنفذ في هذه المنشأة. و انطلاقاً من ذلك يجب تحديد خاصتين أساسيتين من خواص البيتون هما: قابلية التشغيل و المقاومة على الضغط.

إن قابلية تشغيل البيتون تحدد خواص البيتون الطري قبل تجمده، في حين أن المقاومة على الضغط تحدد خواص البيتون المتصلب.

من هذه الطرق ما يعتمد على وضع منحني حبي مثالي لخليط المواد الحصوية و منها ما يعتمد على تحديد نسبة حجم الفراغات المتبقية بين حبات المواد الحصوية و منها ما يعتمد على عامل نعومة المواد الحصوية .

و من أشهر هذه الطرق:

- ١. طريقة فوليير_تومسون FULLER- THMPSON
 - ٢. طريقة عامل النعومة.
 - T. طریقة درو غوریس Dreux-Gorisse.
 - ٤. طريقة بولومي.
 - ٥. الطريقة الأمريكية.

اعتمدنا في تصميم الخلطة المرجعية طريقة درو غوريس Dreux-Gorisse التي تتطلب إجراء تجربة التحليل الحبي لجميع المواد الحصوية الداخلة في تركيب الخلطة البيتونية و رسم المنحنيات الحبية حسبها.

1-7-2-تصميم الخلطة البيتونية باستخدام طريقة درو غوريس Dreux-Gorisse:

و تتميز هذه الطريقة بما يلي [53]:

-من بين الطرائق القلائل التي تعتمد على شكل منحنيات التدرج الحبي للحصويات الداخلة في تصميم الخلطةالبيتونية.

-تأخذ بعين الاعتبار تأثير المكونات الأخرى للخلطة على مواصفاتها .

المعطيات الواجب توافرها لتصميم الخلطة بالطريقة الفرنسية:

-نوعية البيتون المطلوب و أين يستخدم؟ (أبنية- منشآت صناعية- منشآت بحرية...).

-معرفة قوام البيتون المطلوب.

-معرفة المقاومة المطلوبة Rc.

-معرفة نوعية الإسمنت الذي يستخدم في الخلطة.

-معرفة صنف الإسمنت المستخدم бс المستخدم (32.5-42.5-52.5 Mpa).

-مواصفات الحصويات المستخدمة (تدرج- جودة- شكل- رطوبة).

-طريقة الرج المستخدم (آلي- يدوي - بدون رج).

يتم التصميم على مرحلتين: 1- تصميم العجينة الرابطة.

2- تصميم الخلطة الحصوية.

2-7-1-1-تصميم العجينة الرابطة:

العجينة الرابطة هي (إسمنت + ماء + ملدنات+ هواء موجود ضمن الفراغات+إضافات)و يتم تصميمها وفق المراحل التالية[53]:

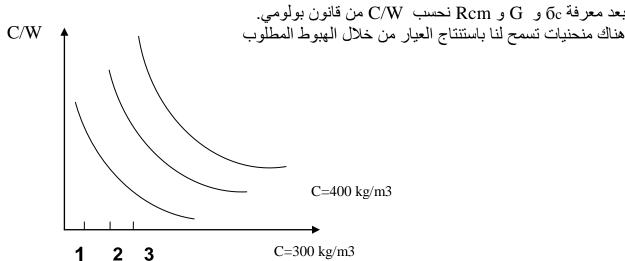
1-تصعيد المقاومة المطلوبة بمقدار (15%).

Rcm المقاومة المطلوبة = المقاومة الإسمية Rcm = المقاومة المصعدة Rcm = Rc *1.15

2-حساب عيار الإسمنت في البيتون C -

- إما أن يُعطى لضرورات إنشائية.
- أو يتم حسابه من قانون بولومي و المقاومة المصعدة:

 Rem=6c *G*(C/W-0.5)


حيث G:معامل يتعلق بنوع و حجم و شكل الحصويات (القطر الأعظمي للحصويات) و تؤخذ قيمه من الجدول التالي (2-14):

دول (2-14) قيم معامل الحصوياتG

كبيرة Dmax≥40mm	متوسطة 20mm≤Dmax≤40mm	صغيرة Dmax≤16mm	نوعية الحصويات
0.65	0.6	0.55	ممتازة LA <18%
0.55	0.5	0.45	جيدة LA=(18-25)%
0.45	0.4	0.35	مقبولة 4.LA=(25-30)%

حيث LA: معامل اهتراء الحصويات

بعد معرفة Gc و Rcm نحسب $\operatorname{C/W}$ من قانون بولومي.

الشكل (2-18) منحنيات حساب العيار C/W بدلالة الهبوط و النسبة C/W.

أصبح معلوماً لدينا (C/W و الهبوط) ثم نحسب العيار C مقدراً بـ Kg/m^3 و ذلك وفق المنحنيات السابقة.

حساب نسبة الماء في الخلطة: أصبح لدينا C و C/W يمكننا حساب W.

حساب حجم العجينة الرابطة:

$$Vc = c/\rho c$$
 :
 $Vw = w/\rho w$
 $\rho c = 3.1 \text{ Kg/L}$
 $\rho w = 1 \text{ Kg/L}$

Vpate=Vc+ Vv +Vw

حيث vg : حجم الحصويات وزن الحصويات pg=(2.6-2.7)

Vpate= $1000 - g/\rho g$

2-7-1-2-تصميم الخلطة الحصوية:

حساب أوزان الحصويات g:

$$V_b = V_C + V_W + V_V + V_G$$

 $1000 = C/\rho_C + W/\rho_W + V_V + g/\rho_G$

- $\rho c = 3.1 \text{ Kg/L}$
 - $\rho w = 1 \text{ Kg/L}$
- حسویات حسیة $\rho_G = (2.6-2.7) \text{Kg/L}$
 - رمل عدسي ho_{S1} =2.6 Kg/L .
 - رمل نبکی ho_{S2} =2.54 Kg/L •

 $V_{
m V}$ مقدرة بـ L/m^3 : تحسب من خلال جدول تابع لقطر الحصويات و القوام كما يلي:

 (L/m^3) جدول (2-2) قيم نسبة الهواء المحتجز في البيتون

Dmax≥40mm	20mm≤Dmax≤40mm	Dmax≤16mm	قوام البيتون
5-25	9-35	10-45	SLUMP≤4Cm جامد
5-15	8-22	9-30	5Cm ≤SLUMP≤9Cm كن
3-10	5-20	7-25	10Cm ≤SLUMP≤15Cmكن جداً
2-8	2-14	2-18	SLUMP≥16Cm مانع

يتم حساب النسبة المئوية الوزنية لكل من البحص و الرمل من منحنيات التدرج الحبي للحصويات وفق المراحل التالية [53]:

أ-نرسم المنحنيات الحبية لكل من البحص و الرمل.

ب-نرسم منحني التدرج الحبي المرجعي وهو منحني التدرج لمزيج من الحصويات بنسب مختلفة تحقق أفضل اكتتاز و أقل مسامية و هو عبارة عن خط منكسر OAB.

O: تنطيق مع بداية منحني الرمل على الخلطة.

B:نهاية منحني تدرج الحبة على الخلطة و تمثل آخر نقطة من منحني التدرج الخاص بالحصويات . A:تمثل نقطة الانكسار .

ج-حساب احداثيات نقطة الانكسار (A):

XA : منتصف القطعة المستقيمة

 $Dmax < 20mm \rightarrow XA = Dmax/2$

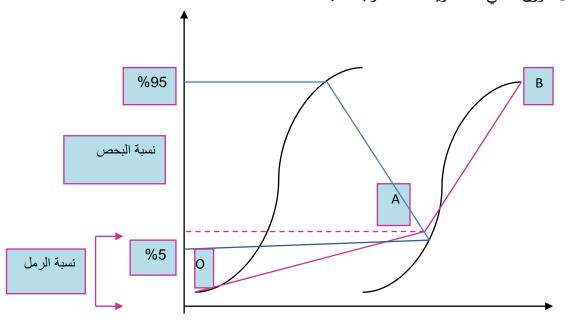
Dmax >20mm → Dmax \geq 5mm

$$YA=50-\sqrt{DMAX}+K$$

K: معامل له علاقة بنعومة و نوع الرمل المستخدم .

حبيبات الرمل المدورة: K=6MF-15

حبيبات الرمل المكسرة: K=6FM-13


د-مراحل الحصول على نسب الخلط المثالية لكل من البحص و الرمل (موضحة بشكل تقريبي على المنحنى الحبى التالى لعينات البحص و الرمل):

1-نحدد النقطة على منحني الرمل التي تتوافق مع المار 95%.

2-نحدد النقطة على منحني البحص و التي تتوافق مع المار %5.

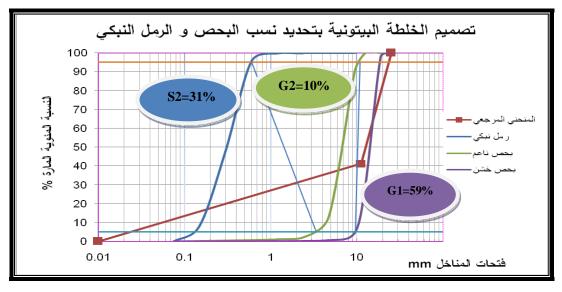
3-نصل بينهما بخط مستقيم يقطع منحني التدرج الحبي المرجعي بنقطة و هذه النقطة هي التي تحدد نسب المزج المثلي.

4-بعد تحديد كل من النسب المئوية للبحص و الرمل يمكن حساب وزن كل من البحص و الرمل من خلال الوزن الكلى للحصويات المحسوب مسبقاً .

الشكل (2-19) طريقة تقريبية لرسم المنحني المرجعي اعتماداً على منحنيات التحليل الحبي لكل من البحص و الرمل واستنتاج النسب المئوية [53].

2-7-2-تصميم الخلطة البيتونية رمل نبكي بمعامل نعومة (mf=1.5)+مزيج بحص خشن (Dmax=12.5mm) و بحص ناعم (Dmax=25mm):

1-تصميم العجينة الرابطة: تتم وفق المراحل التالية:


- تصعيد المقاومة المطلوبة بمقدار (%15)
- Rcm=1.15*Rc=1.15*200=230Kg/cm²
 - حساب النسبة C/w من قانون بولومي وفق العلاقة التالية:
 - Rcm = G*&c*(C/W-0.5)
 - . $C=350 \text{Kg/m}^3$ بفرض عيار الإسمنت
 - . $w=183 \text{Kg/m}^3$ وزن الماء

2-رسم منحنيات التدرج الحبي للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحنى الحبى المرجعي:

يتم رسم المنحني المرجعي الموضح في الشكل (2-2) اعتماداً على منحنيات التحليل الحبي للحصوبات بعد تحديد النقاط التالية:

- تحدید احداثیات نقطة الانکسار (A(XA,YA)
- XA Dmax نقع في منتصف القطعة المستقيمة بين(5mm-Dmax) قع في منتصف
 - $YA = 50 (Dmax)^{^{^{1/2}}} + K$ •
 - حيث K عامل له علاقة بنعومة ونوع الرمل
 - (رمل مکسر) K= 6*mf-13
 - A(11.17,41.25) •

الشكل (2-20) الخط المرجعي الذي يحدد النسب المئوية للبحص الخشن و الناعم و الرمل الناعم للخلطة الأولى.

4-استنتاج النسب المئوية المثالية للحصوبات:

نستتتج من المخطط السابق:

نسبة الرمل النبكي: 31% \$2

نسبة البحص الخشن %G1=59

نسبة البحص الناعم %G2=.10

5-تصميم الخلطة الحصوية:

يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية:

$$V_b = V_C + V_W + V_V + V_G$$

 $1000 = C/\rho_C + W/\rho_W + V_V + G/\rho_G$

- $\rho c = 3.1 \text{ Kg/L}$
- $\rho_W = 1 \text{ Kg/L}$
- حصویات حسیة خشنة ρ_{GI} حصویات حسیة خشنة
- حصويات حسية ناعمة ho_{G2} = 2.65Kg/L
 - رمل عدسي $ho_{S1} = Kg/L$.
 - رمل نبکی $ho_{
 m S2}$ $=2.54~{
 m Kg/L}$

G=1829 Kg

يبين الجدول (2-16) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد نسبةً و وزناً:

الجدول (2-16) تصميم الخلطة البيتونية رقم /1/ المستخدمة في البحث

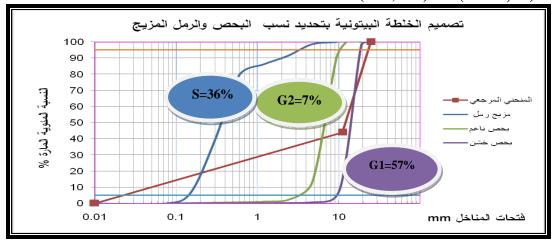
لخلطة						
الماء	الإسمنت	رمل ناعم	المادة			
183	350	567	-	183	1079	الوزن (Kg)
W/0	C= 52	31	-	10	59	النسبة المئوية (%)

2-7-2-تصميم الخلطة البيتونية مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2)+مزيج بحص خشن (Dmax=12.5mm) و بحص ناعم (Dmax=25mm)

1-تصميم العجينة الرابطة:

2- تصميم مزيج الرمل:

• يتم تحديد نسبة كل رمل اعتماداً على معامل نعومته mf وفق العلاقة التالية:


$$mf=A*X+B*Y$$

حيث: A=0.80 نسبة الرمل النبكي، B=0.20 نسبة الرمل العدسي

• نرسم مخطط النسبة المئوية المارة للرمل المزيج: الرمل النبكي *0.80+الرمل العدسي *0.20 3-رسم منحنيات التدرج الحبي للحصوبات اعتماداً على نتائج التحليل الحبي .

4-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (2-12) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A:

$A(XA,YA) = A(11.17,44) \bullet$

الشكل (2-21) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة الثانية.

5- استنتاج النسب المئوية المثالية للحصويات:

S=36% نستنتج من المخطط السابق (2-12) أن: نسبة الرمل المزيج

و نسبة البحص الخشن G1=57% أما نسبة البحص الناعم G2=6.7%

صميم الخلطة الحصوية: يبين الجدول (2-17) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد الجدول (2-17) تصميم الخلطة البيتونية رقم $\frac{6}{2}$ المستخدمة في البحث.

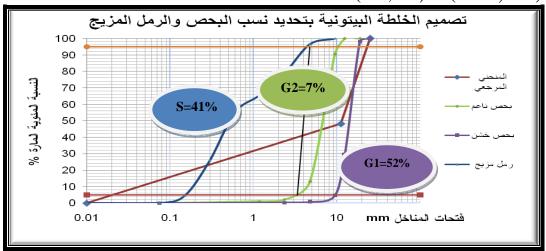
لة البيتونية						
الماء	الإسمنت	رمل ناعم	المادة			
183	350	529	128	128	1017	الوزن (Kg)
W/0	W/C=52		7	7	57	النسبة المئوية

-7-2-تصميم الخلطة البيتونية مزيج رمل عدسي و نبكي بمعامل نعومة (-4-7-2) مزيج بحص خشن (-4-7-2) و بحص ناعم (-4-7-2) و بحص ناعم (-4-7-2)

1 -تصميم العجينة الرابطة:

2- تصميم مزيج الرمل:

يتم تحديد نسبة كل رمل اعتماداً على معامل نعومته mf وفق العلاقة التالية:


$$mf=A*X+B*Y$$

حيثA=0.50 نسبة الرمل النبكي، B=0.50 نسبة الرمل العدسي

• نرسم مخطط النسبة المئوية المارة للرمل المزيج: الرمل النبكي *0.50+الرمل العدسي *0.50 3-رسم منحنيات التدرج الحبي للحصويات اعتماداً على نتائج التحليل الحبي .

4-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (2-12) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A:

$(XA,YA)=A(11.17,48.2) \bullet$

الشكل (2-22) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة الثالثة.

5-استنتاج النسب المئوية المثالية للحصويات:

نستنتج من المخطط السابق (22-2): نسبة الرمل المزيج %S=41

نسبة البحص الخشن %G1=52 نسبة البحص الناعم %G2=.7

6-تصميم الخلطة الحصوية: يبين الجدول (2-18) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد. الجدول (2-18) تصميم الخلطة البيتونية رقم /3/ المستخدمة في البحث:

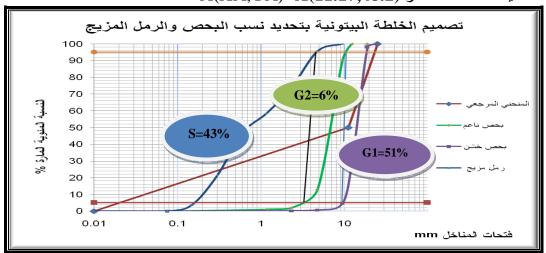
ة البيتونية						
الماء	الإسمنت	رمل ناعم	رمل خشن	المادة		
183	350	375	375	128	950	الوزن (Kg)
W/C	C=52	20.5	20.5	7	52	النسبة المئوية(%)

(mf=3) مزيج بحص الخلطة البيتونية مزيج رمل عدسي و نبكي بمعامل نعومة (mf=3) مزيج بحص خشن (Dmax=12.5mm) و بحص ناعم (Dmax=25mm):

1-تصميم العجينة الرابطة:

2-تصميم مزيج الرمل:

يتم تحديد نسبة كل رمل اعتماداً على معامل نعومته mf وفق العلاقة التالية:


$$mf=A*X+B*Y$$

حيثA=0.50 نسبة الرمل النبكي، B=0.50 نسبة الرمل العدسي

• نرسم مخطط النسبة المئوية المارة للرمل المزيج: الرمل النبكي *0.50+الرمل العدسي *0.50 3-رسم منحنيات التدرج الحبي للحصويات اعتماداً على نتائج التحليل الحبي.

4-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (2-23) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A:

• احداثیات نقطة الانكسار (11.17,48.2) ماداثیات نقطة الانكسار

الشكل (2-22) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة الرابعة.

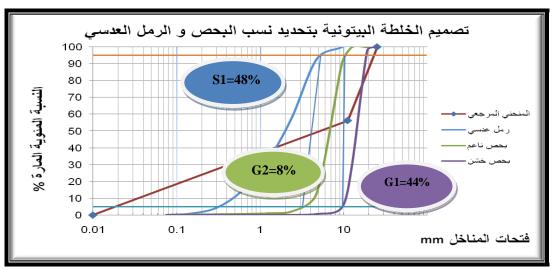
5-استتتاج النسب المئوية المثالية للحصويات:

نستنتج من المخطط السابق (2-22) النسب التالية: نسبة الرمل المزيج: %S=43

G2=.6% و نسبة البحص الخشن G1=51% أما نسبة البحص الناعم

6-تصميم الخلطة الحصوية: يبين الجدول (2-19) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد. الجدول (2-19) تصميم الخلطة البيتونية رقم /4/ المستخدمة في البحث:

لة البيتونية						
الماء	الإسمنت	بحص خشن بحص ناعم رمل خشن رمل ناعم				المادة
183	350	312	468	109	925	الوزن (Kg)
W/0	C= 52	17	26	6	51	النسبة المئوية(%)


6-7-2 تصميم الخلطة البيتونية رمل عدسي بمعامل نعومة (mf=4)+مزيج بحص خشن (Dmax=12.5mm) و بحص ناعم (Dmax=25mm)

1-تصميم العجينة الرابطة:

2-رسم منحنيات التدرج الحبي للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (24-2) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A:

• احداثیات نقطة الانکسار (XA,YA) احداثیات نقطة الانکسار

الشكل (2-24) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة الخامسة.

4-استنتاج النسب المئوية المثالية للحصويات:

S1=48% نستنتج من المخطط السابق (24-2) النسب التالية: نسبة الرمل النبكي G2=.8% و نسبة البحص الخشن G1=44% أما نسبة البحص الناعم G3=.8%

5-تصميم الخلطة الحصوية:

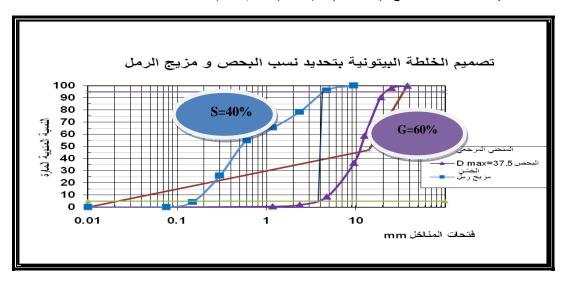
يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية : $V_b = V_C + V_W + V_V + V_G$

G=1827 Kg

يبين الجدول (2-19) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد.

الجدول (20-2) تصميم الخلطة البيتونية رقم /5/ المستخدمة في البحث:

لة البيتونية						
الماء	الإسمنت	رمل ناعم	رمل خشن	المادة		
183	350	-	877	146	804	الوزن (Kg)
W/0	C= 52	-	-48	8	44	النسبة المئوية(%)


7-7-2 تصميم الخلطة البيتونية بحص خشن (Dmax=37.5mm) و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)

1-تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبى للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (2-25) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A.

• احداثیات نقطة الانکسار (14,47.08) A(XA,YA)=

الشكل (2-25) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /6/.

4-استنتاج النسب المئوية المثالية للحصويات:

S=40%: نستنتج من المخطط السابق (2-2) النسب التالية: نسبة مزيج الرمل: G=60%

5-تصميم الخلطة الحصوية:

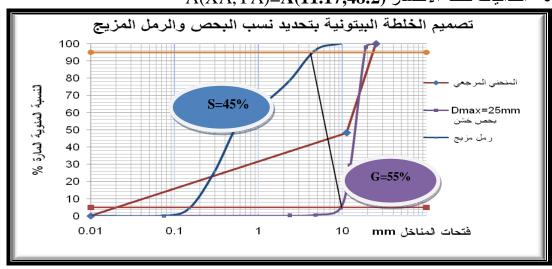
يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية:

$$V_b \!\!=\!\! V_C \!\!+\!\! V_W \!\!+\!\! V_V \!\!+\!\! V_G$$
 :
$$1000 = C/\rho_C \!\!+\!\! W/\rho_W \!\!+\!\! V_V \!\!+\!\! G/\rho_G$$

يبين الجدول (2-21) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد.

الجدول (21-2) تصميم الخلطة البيتونية رقم $\frac{1}{6}$ المستخدمة في البحث:

طة البيتونية	النسب المئوية والكميات اللازمة وزناً لمتر مكعب واحد من الخلطة البيتونية							
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة			
183	350	365	365	1093	الوزن (Kg)			
W/C	W/C=52		20	60	النسبة المئوية (%)			


8-7-2-تصميم الخلطة البيتونية بحص خشن (Dmax=25mm) و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)

1- تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبي للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (2-2) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A..

• احداثیات نقطة الانکسار (11.17,48.2) A(XA,YA)=

الشكل (2-26) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /7/.

4-استنتاج النسب المئوية المثالية للحصويات:

S=45%: نستنتج من المخطط السابق (2G-2) النسب التالية: نسبة مزيج الرمل: G=55%

5-تصميم الخلطة الحصوية:

يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية:

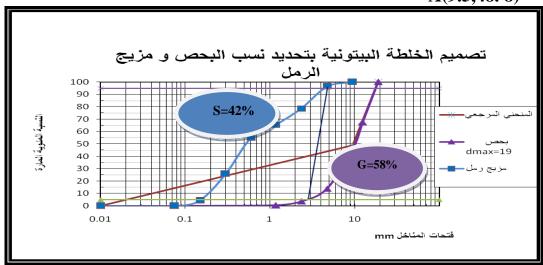
$$\begin{aligned} V_b &= V_C + V_W + V_V + V_G \\ 1000 &= C/\rho_C + W/\rho_W + V_V + G/\rho_G \end{aligned}$$

يبين الجدول (2-22) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد نسبةً و وزناً.

المستخدمة في البحث:	171	تەنىق، قم	الخلطة البيا	تصميد	(2.2-2)	الحدول
السندس ني البحد،	/ / /	سوسيات ربح		سسيم	(22 2)	اجدون

البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة
183	350	410	410	1002	الوزن (Kg)
W/C=52		22.5	22.5	55	النسبة المئوية(%)

9-7-2 تصميم الخلطة البيتونية بحص خشن (Dmax=19mm) و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)


1- تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبى للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحني الحبي المرجعي: تم رسم المنحني المرجعي الموضح في الشكل (2-2) اعتماداً على منحنيات التحليل الحبي للحصويات و بعد تحديد احداثيات نقطة الانكسار A:

- احداثیات نقطة الانکسار (A(XA,YA)
- XA = Dmax/2 $Dmax < 20mm \bullet$

A(9.5,48.8) •

الشكل (2-27) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /8/.

4-استنتاج النسب المئوية المثالية للحصويات:

S=42%: نسبة مزيج الرمل: S=42% النسب التالية: نسبة مزيج الرمل: S=58% نسبة البحص الخشن

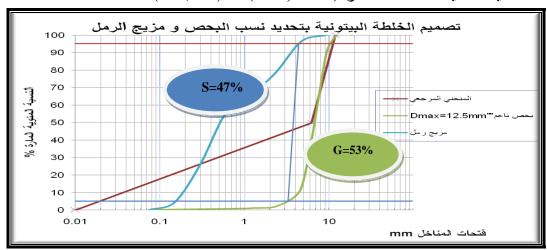
<u>5</u>-تصميم الخلطة الحصوية:

 $V_b = V_C + V_W + V_V + V_G$: وفق العلاقة التالية G (البحص والرمل) وفق العلاقة التالية G (البحص والرمل) وفق G (البحص والرمل) وفق G (البحص والرمل) وفق العلاقة التالية G (البحص والرمل) وفق العلاقة التالية والبحص والرمل) وفق العلاقة التالية والبحص وال

يبين الجدول (2-23) تركيب الخلطة البيتونية اللازمة لمتر مكعب واحد نسبةً و وزناً.

	101 *	*		/aa a	
المستخدمة في البحث:	رهم /8/	الخلطه البيتونيه ر	ا تصمیم	(23-2)	الجدول (

طه البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة
183	350	384	384	1059	الوزن (Kg)
W/C	=52	21	21	58	النسبة المئوية(%)


2-7-10-تصميم الخلطة البيتونية بحص ناعم (Dmax=12.5mm) و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)

1- تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبى للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحنى الحبى المرجعى:

• تحدید احداثیات نقطة الانکسار (6.25,49.67) • تحدید احداثیات نقطة الانکسار

الشكل (2-22) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /9/.

4-استنتاج النسب المئوية المثالية للحصويات:

S=47%: نسبة مزيج الرمل: (28-2): نسبة مزيج الرمل: G=53% نسبة البحص الناعم

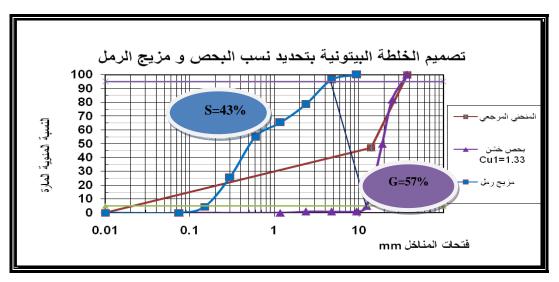
5-تصميم الخلطة الحصوية:

يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية: $V_b{=}V_C{+}V_W{+}V_V{+}V_G$ $1000=C/\rho_C{+}W/\rho_W{+}V_V{+}G/\rho_G$

G=1808 Kg فتكون الخلطة البيتونية المطلوبة اللازمة لمتر مكعب واحد مبينة بالجدول (G=1808 Kg):

الجدول (2-24) تصميم الخلطة البيتونية رقم /9/ المستخدمة في البحث:

لطة البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص ناعم	المادة
183	350	425	425	958	الوزن (Kg)
W/C=52		43.5	43.5	53	النسبة المئوية(%)


11-7-2 تصميم الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm) و معامل انتظام Cuf=2.7) و معامل انتظام و مزيج رمل عدسي و نبكي بمعامل نعومة (mf=2.7)

1- تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبي للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحني الحبي المرجعي:

• تحدید احداثیات نقطة الانکسار (14,47.08) •

الشكل (2-29) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /10/.

4-استنتاج النسب المئوية المثالية للحصويات:

S=43%: نسبة مزيج الرمل: (29-2): نسبة مزيج الرمل: G=57%

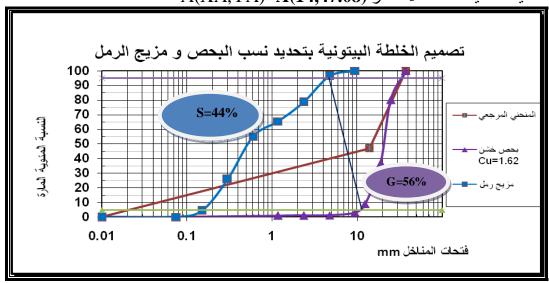
5-تصميم الخلطة الحصوية:

يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية : $V_b=V_C+V_W+V_V+V_G: 1000=C/\rho_C+W/\rho_W+V_V+G/\rho_G$ -2) فتكون الخلطة البيتونية المطلوبة اللازمة لمتر مكعب واحد مبينة بالجدول (25):

المستخدمة في البحث:	الخلطة البيتونية رقم /10/	الجدول (2-25) تصميم
---------------------	---------------------------	---------------------

لطة البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة
183	350	392	392	1039	الوزن (Kg)
W/C=52		21.5	21.5	57	النسبة المئوية(%)

2-7-2-تصميم الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm) و معامل انتظام


(mf=2.7) و مزيج رمل عدسي و نبكي بمعامل نعومة Cu2=1.62

1- تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبى للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحني الحبي المرجعي:

• تحدید احداثیات نقطة الانکسار (14,47.08) A(XA,YA)=

الشكل (2-30) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /11/.

4- إستنتاج النسب المئوية المثالية للحصويات:

S=44%: نسبة مزيج الرمل: G=56%: نسبة البحص الخشن G=56%

5-تصميم الخلطة الحصوية:

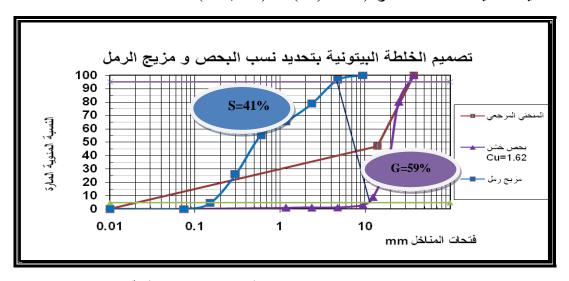
يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية :

 $V_b \!\!=\!\! V_C \!\!+\!\! V_W \!\!+\!\! V_V \!\!+\!\! V_G$

G=1823 Kg فتكون الخلطة البيتونية المطلوبة اللازمة لمتر مكعب واحد مبينة بالجدول (G=1823 Kg):

الجدول (2-26) تصميم الخلطة البيتونية رقم /11/ المستخدمة في البحث:

لطة البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة
183	350	401	401	1023	الوزن (Kg)
W/C=52		22	22	56	النسبة المئوية(%)


0 - 13-7-2 تصميم الخلطة البيتونية باستخدام بحص خشن بقطر (0 - 13-7-2 و معامل انتظام 0 - 13-7-2 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيج رمل عدسي و نبكي بمعامل نعومة (0 - 13-1.96 و مزيد رما در المعامل نعومة (0 - 13-1.96 و مزيد رما در المعامل نعومة (0 - 13-1.96 و مزيد رما در المعامل

1- تصميم العجينة الرابطة.

2-رسم منحنيات التدرج الحبى للحصويات اعتماداً على نتائج التحليل الحبي.

3-رسم المنحنى الحبى المرجعى:

• تحدید احداثیات نقطة الانکسار (14,47.08) A(XA,YA)=

الشكل (2-31) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /12/.

4- استنتاج النسب المئوية المثالية للحصويات:

S=41% نستتج من المخطط السابق (2-13) النسب التالية: نسبة مزيج الرمل G=59% نسبة البحص الخشن

5-تصميم الخلطة الحصوية:

يتم حساب أوزان الحصويات (البحص والرمل) G وفق العلاقة التالية:

 $V_b \!\!=\!\! V_C \!\!+\!\! V_W \!\!+\!\! V_V \!\!+\!\! V_G$

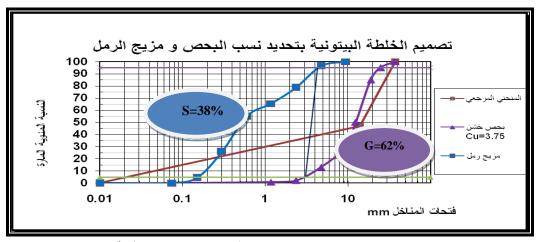
G=1827 Kg فتكون الخلطة البيتونية المطلوبة اللازمة لمتر مكعب واحد مبينة بالجدول (2-2):

الجدول (2-27) تصميم الخلطة البيتونية رقم /12/ المستخدمة في البحث:

لطة البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة
183	350	375	375	1078	الوزن (Kg)
W/C=52		20.5	20.5	59	النسبة المئوية(%)

14-7-2 تصميم الخلطة البيتونية باستخدام بحص خشن بقطر (Dmax=37.5mm) و معامل انتظام (cuf=2.57): و مزيج رمل عدسى و نبكى بمعامل نعومة (cuf=2.7):

تتطابق مواصفات هذه الخلطة مع الخلطة البيتونية السادسة المذكورة سابقاً لذلك لن نكرر تصميمها.


0 Dmax=37.5mm) و معامل انتظام بحص خشن بقطر (Dmax=37.5mm) و معامل انتظام 0 0 Cu=3.75 و مزیج رمل عدسی و نبکی بمعامل نعومة 0

1- تصميم العجينة الرابطة:

2-رسم منحنيات التدرج الحبى للحصويات اعتماداً على نتائج التحليل الحبى.

3-رسم المنحني الحبي المرجعي:

• تحدید احداثیات نقطة الانکسار (A(XA,YA)=A(14, 47.08)

الشكل (2-32) الخط المرجعي الذي يحدد النسب المئوية للبحص و الرمل للخلطة رقم /13/.

4-استنتاج النسب المئوية المثالية للحصويات:

S=38% : نسبة مزيج الرمل: (32-2) النسب التالية: نسبة مزيج الرمل: G=62% نسبة البحص الخشن

5-تصميم الخلطة الحصوية:

 $V_b=V_C+V_W+V_V+V_G$: وفق العلاقة التالية G (البحص والرمل) وفق العلاقة التالية G (البحص والرمل) وفق العلامة البيتونية المطلوبة اللازمة لمتر مكعب واحد مبينة بالجدول (G=2): الجدول (G=2) تصميم الخلطة البيتونية رقم /13/ المستخدمة في البحث:

خلطة البيتونية					
الماء	الإسمنت	رمل ناعم	رمل خشن	بحص خشن	المادة
183	350	345	345	1130	الوزن (Kg)
W/C=52		19	19	62	النسبة المئوية(%)

2-8-قابلية تشغيل البيتون:

تعد قابلية تشغيل البيتون من الخواص الأساسية للبيتون الطري كما أشرنا سابقاً، و تعبر عن مجموعة من صفاته الهندسية:

- قابليته للرص و سهولة خروج الهواء منه .
- سهولة وضعه في القالب و تكيفه فيه و تغلغله بين قضبان التسليح دون أن يترك تجاويف أو تكهفات (تعشيش).
- ثباته و تجانسه و بقاؤه متماسكاً بعد الرج و أثناء وضعه في القالب دون أن يتعرض لظاهرة الانفصال (Segregation) بين حباته .

تتأثر قابلية التشغيل بعوامل متعددة نذكر منها:

- كمية ماء الجبل أو النسبة W/C.
- نوع و طبيعة المواد الحصوية و تركيبها الحبي.
 - الزمن و درجة حرارة الوسط المحيط.
 - الإسمنت المستعمل.
 - المواد المضافة للبيتون.

و تقاس قابلية التشغيل بواسطة:

1-مخروط أبرامز لتعيين الهبوط كمعيار لقياس القوام و قابلية التشغيل

2- جهاز قياس قابلية تشغيل البيتون و المونة الإسمنتية المانيابيليمتر. (Maniabilimètre).

2-8-1 تجربة تعيين الهبوط بمخروط أبرامز للبيتون الإسمنتى:

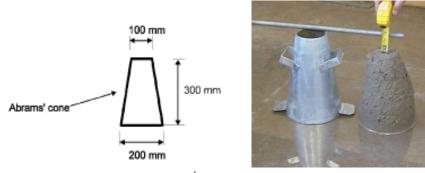
Slump of Portland Cement Concrete AASHTO T119-74 ASTM C143-74

• الغاية من التجربة:

معرفة قابلية تشغيل البيتون الإسمنتي أو لدونته و التي يعبر عنها بقياس الهبوط بمخروط أبرامز و بالتالي معرفة كمية ماء الجبل المضافة .تجرى التجربة بعد خلط البيتو ن جيداً و التأكد من تجانس حباته و قبل صب العينات.

• الدراسة النظرية:

عندما يضاف الماء إلى خليط المواد الحصوية و الإسمنت تتشكل خليطة لدنة لزجة تقل لزوجتها بزيادة كمية الماء المضافة و يتطلب كل نوع من أنواع البيتون لدونة معينة تسمح له بالصب داخل القالب بشكل جيد و يتم قياس هذه اللدونة و ما تعرف بقابلية تشغيل البيتون بعدة طرق نظامية تختلف من نظام إلى آخر.


الطريقة الأكثر انتشاراً في العالم لسهولتها هي ما تدعى (Slump test) و بناءً على قيم الهبوط المقاسة يصنف البيتون إلى بيتون جامد أو لدن أو سائل و لكل منها مجال استخدامه .و يبين الجدول (2-22) أدناه تصنيف البيتون حسب قابلية تشغيله مقاسة بمخروط أبرامز و مجال استعمال كل نوع من هذه الأنواع [62] حسب ما جاء في الكود العربي السوري لتصميم و تنفيذ المنشآ ت بالخرسانة المسلحة مع بعض التعديلات البسيطة.

مجال استخدامه	قوام البيتون	قيمة الهبوط مقاسة بمخروط أبرامز (mm)
أرضيات وبلاطات الطرق البيتونية	بيتون جامد جداً	0-25
المنشآت الكتلية	بيتون جامد	25-50
بيتون مسلح	بيتون لدن	50-100
العناصر البيتونية الرقيقة والبيتون المضخوخ	بيتون سائل	100-150

الجدول (2-29) تصنيف البيتون حسب قابلية التشغيل [62]

الأدوات والأجهزة المستخدمة:

- مخروط أبرامز: و هو عبارة عن وعاء معدني بشكل جذع مخروط يصنع من معدن صلب بسماكة لا تقل عن (1.6mm) غير قابل للصدأ و غير قابل للتفاعل مع العجين الإسمنتية و الشكل يوضح أبعاده كما يلي:

الشكل (2-33) شكل و أبعاد مخروط ابرامز.

يزود الوعاء على جانبيه بمسكتين تساعدان في حمله كما تزود القاعدة السفلى بصفيحتين جانبيتين تساعدان في تثبيته تماماً.

- صينية مستوية القاعدة تماماً أبعادها بحدود (70*70Cm) بالإضافة إلى قضيب معدني من الفولاذ طوله حوالي (60Cm).

مراحل إجراء التجربة:

- توضع الصينية على أرض مستوية و يوضع على أحد جوانبها المخروط يملأ المخروط بالبيتون على ثلاث طبقات ترص كل طبقة بواسطة القضيب المعدني بمعدل (25) ضربة للطبقة الواحدة و يسوى سطح الطبقة الأخيرة بواسطة المالج و المسطرة المعدنية.
 - مباشرة يرفع المخروط فيهبط البيتون بتأثير وزنه الذاتي.
 - يوضع المخروط فارغاً إلى جانب البيتون المختبر و يقاس الفرق بين مستوي سطح القاعدة العليا و مستوى سطح البيتون المختبر و بمناطق متعددة من سطح البيتون و تعيين الهبوط الوسطى.

2-8-2-تجربة قياس قابلية تشغيل البيتون بجهاز المانيابيليمتر (Maniabilimètre):

الغاية من التجربة:

يهدف هذا الاختبار إلى تحديد قوام البيتون أو المونة الإسمنتية باستخدام جهاز قياس قابلية التشغيل والذي يعتمد مبدأ جريان ضمن حيز ما بفعل الرج.

تقدر قابلية التشغيل بقياس زمن الجريان (sec) الفاصل بين بدء الرج و وصول الخلطة الطرية إلى الخط المرجعي في طرف الجهاز.

جهاز قياس قابلية التشغيل:

- يتألف الجهاز من حيز على شكل متوازي مستطيلات بأبعاد (300*30*60) و من حاجز معدني متحرك يفصل الحيز السابق إلى قسمين: الأ ول توضع فيه العينة قبل الجريان و الثاني تجرى فيه العينة بعد نزع الحاجز.
 - تُصب عينة البيتون في القسم الأول من الجهاز قبل الحاجز المعدني.
- تم تصميم جهاز مصغر عن جهاز المانيابيليمتر يُوضع داخله من أجل تخفيض كمية الخلطة البيتونية اللازمة للجهاز و التي سوف يتم دراسة تغير معاملاتها على أداء الملدن .والجهاز موضح في الشكل (2-34) و أبعاد الجهاز الجديد هي (10cm *30*00)، لم يؤثر تصغير الأبعاد على شكل النتائج إذ أن استخدام الجهاز كان بذات الأبعاد لجميع النتائج المستخلصة في البحث.
- لقياس قابلية تشغيل البيتون نقوم بترك العينة تجري بعد رفع الحاجز و تحت رج آلي ثابت حتى تصل إلى الخط المرجعي في طرف الجهاز، حيث يجري البيتون بعد إزالة الحاجز المائل من الطرف الأول للجهاز إلى الخط المرجعي، مستغرقاً زمناً يسمى زمن جريان الخلطة البيتونية الطرية يتعلق بقابلية تشغيلها
 - يزداد زمن جريان الخلطة البيتونية الطرية كلما قلت قابلية التشغيل، و ينقص بزيادتها.

الأدوات والأجهزة المستخدمة:

• رمل جاف+بحص جاف +إسمنت صالح للاستخدام.

- الجبالة +أوعية للوزن و الخلط.
- جهاز قياس قابلية التشغيل: المانيابيليمتر (Maniabilimètre) مع ملحقاته.
 - ساعة توقيت زمني (ميقاتية).
 - ميزان الكتروني بدقة 1g−.

الشكل (2-34) جهاز المانيابيليمتر لقياس زمن جريان الخلطة البيتونية الطرية.

الدراسة النظرية:

تتم عملية الخلط وفق المراحل التالية [53]:

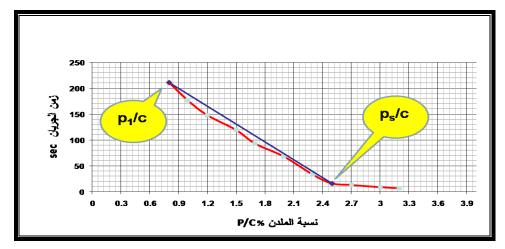
- وزن المواد (رمل -بحص- إسمنت ماء- ملدن) بدقة و بشكل منفصل.
 - وضع الحصويات (الجبالة متوقف).
 - يتم خلط المواد على الناشف.
 - وضع الإسمنت في الجبالة (الخلاط متوقف).
 - تشغيل الجبالة بسرعة بطيئة مدة 30sec.
 - إضافة الملدن إلى الماء و توزيع المزيج تدريجياً أثناء عملية الخلط.
 - تشغيل الجبالة بسرعة مدة 120sec ثمّ ببطء مدة 120sec.
- إفراغ المواد في مخروط أبرامز على طبقتين مع الدك 25 دكة لكل طبقة ثم نزع المخروط ثم قياس قيمة الهبوط الحاصل للخلطة الببيتونية الطرية المستخدة في البحث.
- الإفراغ في جهاز قياس قابلية التشغيل (Maniabilimètre) على دفعتين مع الدك 25 مرة لكل دفعة و باتجاه الداخل و بشكل عمودي ثمّ تسوية السطح من دون رص.
- تشغيل الرجاج بشكل متزامن مع نزع الحاجز مع الحفاظ على طاقة رج ثابتة لكل التجارب و مراقبة جريان البيتون حتى الوصول إلى الخط المرجعي المحدد في طرف الجهاز، و تسجيل زمن جريان الخلطة الطرية اللازم لقطع المسافة ضمن الحيز المحدد.

تم حساب كمية المواد الداخلة في تركيب الخلطة البيتونية المصغرة (بحدود 30L) اللازمة لإنجاز تجربتي مخروط ابرامز و تجربة المانيابيليمتر.

الفصل الثالث

نتائج الاختبارات و مناقشتها

Test's Results and Discussing


الاستنتاجات و التوصيات

Conclusion and Recommendation

نعرف في هذا الفصل أهم النتائج التي تم الوصول إليها في هذا البحث مع تقديم آلية علمية لتقييم أداء الملدن في الخلطة البيتونية الطرية تعتمد على شكل منحني الإشباع للخلطة و هو ماسيتم تفصيله ضمن الفصل، كما قمنا بتقديم تحليل و تفسير علمي لهذه النتائج و اقتراح بعض المعادلات التنبؤية الخاصة بتأثير معاملات الخلطة البيتونية على أداء الملدن وصولاً إلى الاستنتاجات و التوصيات المقترحة للأبحاث المستقبلية في هذا المجال.

3-1-تحديد معيار مناسب لتقييم أداء الملدن في الخلطات البيتونية المدروسة:

- تشير أغلب المراجع إلى نسبة محددة للملدن و مثالية لا ينصح بتخطيها للحصول على أفضل أداء للملدن في الخلطة البيتونية الطرية [52,55,56,57].
 - ينظر إلى الأداء الجيد بتحسين قابلية التشغيل من خلال رفع قيمة الهبوط في مخروط أبرامز (slump) أو تخفيض زمن الجريان في تجربة المانيابيلمتر.
 - للوقوف على آلية تأثير الملدن على قابلية التشغيل لا بد من دراسة منحني تغير قيم الهبوط أو زمن الجريان بدلالة نسبة الملدن المضافة.
- غالباً ما تقاس نسبة الملدن إلى الإسمنت كنسبة وزنية p/c و قد يقصد أحياناً بقيمة "p" إما وزن المادة الصلبة في المحلول أو وزن محلول الملدن الإجمالي.
- يأخذ شكل منحني الإشباع الذي يمثل تغير قيمة زمن الجريان المقاس بجهاز المانيابيلميتر بدلالة
 تغير النسبة p/c شكلاً نموذجياً وفق المخطط (1-3) أدناه:

الشكل (1-3) الشكل التفصيلي لمنحنى الإشباع

تمثل قيمة المحور الأفقي x: نسبة الملدن المضافة %p/c. تمثل قيمة المحور الشاقولي y: زمن الجريان الهقاس للخلطة البيتونية الطرية.

- تبين النتائج المتعددة التي حصلنا عليها في بحثنا و التي نجدها في الأبحاث المرجعية المختلفة حول الملدنات أن منحني الإشباع المذكور يبدأ بهبوط م تسارع أو هادئ عند زيادة النسبة p/c ثم يسعى إلى الاستقرار و اتخاذ مقارب يبدأ عند قيمة معينة للنسبة p/c نسميها نقطة الإشباع للملدن .
 - نعرف نقطة الإشباع للملدن Ps/c: القيمة القصوى للنسبة p/c التي يبلغ عندها الملدن الأداء الأقصى لقابلية تشغيل الخلطة الطرية و يصبح تأثيره بعدها مهملاً.
- يمكن تقييم أداء الملدن في الخلطة الطرية من الشكل النموذجي المعروض في المخطط السابق الشكل (3-1) الذي يظهر بقسمه الأول أداء مميزاً للملدن إذا ما أظهر هذا القسم ميلاً شديداً، أو أداء عادياً إذا ما أظهر هذا القسم ميلاً عادياً.
 - تم في بحثنا اعتماد ميل المستقيم Ip كمعيار أساسي ثابت لتقييم أداء الملدن لجميع الخلطات.
- يعرف ميل المستقيم I_P بأنه ميل الجزء الهابط من منحني الإشباع بين النقطتين التاليتين: I_P الأولى I_P الإشباع الانطلاق التي يبدأ الملدن عندها بالتأثير على قابلية تشغيل الخلطة الطرية ، و النقطة الثانية I_P (I_P المنحني و هي نقطة الإشباع التي يبدأ عندها المنحني بتغير ميله بشكل واضح و السعي باتجاه مقارب و هو ما يفسر حصولنا في عدد من المنحنيات على قيم زمن جريان أقل بشكل طفيف من الزمن الموافق لنسبة الإشباع الاصطلاحية .
 - عرفنا الميل وفق العلاقة التالية:

$I_P = (T_1 - T_S) / (P_S / C - P_1 / C)$

زمن الجريان المبدئي للخلطة الطرية. T_1

. رمن الجريان الموافق لدرجة الإشباع للخلطة الطرية. $T_{\rm S}$

:سبة الملدن المبدئية P_1/C

الطرية. المادن الموافقة لدرجة إشباع الخلطة الطرية. $P_{\rm S}/C$

تبين النتائج العديدة للتجارب المجراة على الخلطات البيتونية الطرية و التي تتجاوز المائة أن النسبة الدنيا للملدن المبدئية تقارب القيمة (0.8%) دونها لا يبدي الملدن أداءً ملحوظاً على قوام و قابلية تشغيل البيتون لذلك اعتمدت النسبة (0.8%) كقيمة مرجعية للملدن المستخدم يحسب ميل المستقيم بينها و بين نقطة حد الإشباع.

• يمكن أن يضاف إلى هذا المعيار نسبة الإشباع $\mathbf{p}_{s}/\mathbf{c}$ كمعيار إضافي و التي تدل مبدئياً على ملدن بأداء جيد بقيمتها الدنيا و ملدن بأداء أقل جودة بقيمتها العظمى.

حاولنا في تحديد هذا المعيار إجراء مقاربة مع منحني بنغهام الذي يصف ريولوجيا جريان البيتون أو السوائل من خلال تحديد بارمترات اللزوجة و عتبة القص وفق المخطط السابق (1-16) [55]. تم في بحثنا اعتماد أداء الملدن في البيتون الطري لتقييم تأثير إضافته على قوام و تدفق البيتون في الحالة الطرية consistency or fluidity، وفق الشكل النموذجي لمنحني الإشباع المعروض في المخطط السابق (3-1). حيث يجوف الأداء بأنه ميل المنحني المعبر عن العلاقة بين معدل الإضافة للملدن و زمن الجريان للخلطة الطرية و المقاس بجهاز المانيابيليمتر الذي يصف سلوك الجريان للبيتون الطري، مع التأكيد على أن الزيادة في معدل الإضافة للملدن تحسن بمستوى أداء الملدن حتى نقطة محددة لا ينصح بتجاوزها هي نقطة حد الإشباع بعدها يكون تأثير الملدن على الخلطة الطرية مهملاً. نستطيع بعد مقاربة معادلة بنغهام الشهيرة المشار لها في المخطط السابق (1-16) أن نستنتج المعادلة الرياضية التي تصف ريولوجيا البيتون الطري من خلال تحديد بارامترات الأداء و عتبة الجريان وفق العلاقة الرياضية التالبة:

$T_S = T_1 - I_P * \Delta P/C$

حبث:

رمن الجريان الموافق لدرجة الإشباع للخلطة الطرية. $T_{\rm S}$

زمن الجريان المبدئي للخلطة الطرية. T_1

. P_S/C و نسبة الإضافة للملدن أي الفرق بين نسبة الملدن المبدئية P_1/C و نسبة الإشباع $\Delta P/C$

نسبة الملدن المبدئية الموافقة لبدء قابلية تشغيل الخلطة الطرية. P_1/C

P_S/C: نسبة الملدن الموافقة لدرجة إشباع الخلطة الطرية.

 $\mathbf{I}_{\mathbf{P}}$: ميل المستقيم المعبر عن أداء الملدن في الخلطة الطرية، و الذي يمكن حساب قيمته بالاعتماد على الهعادلة الرياضية السابقة و بذلك نعرف الميل بالعلاقة التالية:

 $I_P = (T_1 - T_S) / (P_S / C - P_1 / C)$

2-3-دراسة تأثير معامل النعومة للرمل mf على أداء الملدن في الخلطة البيتونية:

قمنا لهذا الغرض بتصميم عدد من الخلطات البيتونية وفق طريقة درو غرويس المشار لها سابقاً في الفصل الثاني من البحث متماثلة الخواص و تختلف فيما بينها بمعامل نعومة الرمل المستخدم، حيث تمت دراسة تأثير النعومة على أداء الملدن في الخلطات البيتونية من خلال إجراء اختبار القوام و قابلية التشغيل على الخلطات البيتونية.

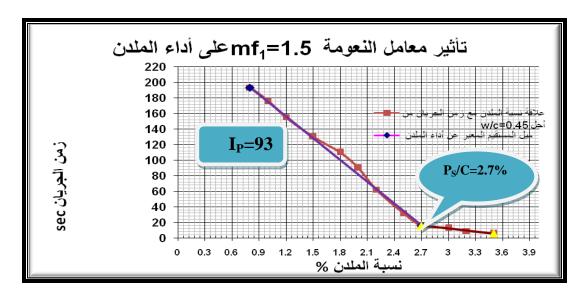
تم في الجدول (3-1) تحديد تراكيب الخلطات البيتونية المتغيرة مع تغير قيم معامل النعومة للرمل المستخدم في البحث.و التي تم اجراء الاختبارات عليها لهذا الغرض:

في البحث.	ل المستخدم	النعومة للرم	قيم معامل	عند تغير	البيتونية	الخلطات) تراكيب	(1-3)	الجدول (
-----------	------------	--------------	-----------	----------	-----------	---------	----------	-------	----------

	•				
الخلطة 5 mf ₅₌ 4	الخلطة4 mf ₄₌ 3	الخلطة 3 mf ₃₌ 2.7	الخلطة2 mf ₂₌ 2	الخلطة 1 mf ₁₌ 1.49	المادة kg/m3
350	350	350	350	350	الإسمنت
158	158	158	158	158	الماء
804	925	950	1040	1080	بحص خشن 12.5-25mm
146	109	128	128	183	بحص ناعم 5-12.5mm
877	468	375	128	0	رمل خشن
0	312	375	529	570	رمل ناعم

أجريت اختبارات القوام المتمثلة في حساب زمن الجريان للخلطات السابقة باستخدام جهاز المانيابيلميتر عند نسب مختلفة للملدن، حيث اعتمدت النسبة ($0.8 = P_1/C$) كقيمة ابتدائية للملدن المستخدم بعد إجراء العديد من التجارب دونها لا يبدي الملدن أداءاً ملحوظاً على قوام البيتون، ثم تم تصعيد النسبة P/C تدريجياً حتى بلغت القيمة القصوى لها الخاصة بكل خلطة على حدا.

تم رسم منحنيات تغير زمن الجريان بدلالة نسبة الملدن للخلطات السابقة التي يتغير فيها بارمتر واحد فقط و هو معامل نعومة الرمل من القيمة $\mathbf{mf}_{1=1.49}$ إلى القيمة $\mathbf{mf}_{5=4}$.


تعين المنحنيات التالية السلوك الريولوجي لهذه الخلطات المتغير بتغير نسبة الملدن لكل معامل نعومة على حدى.

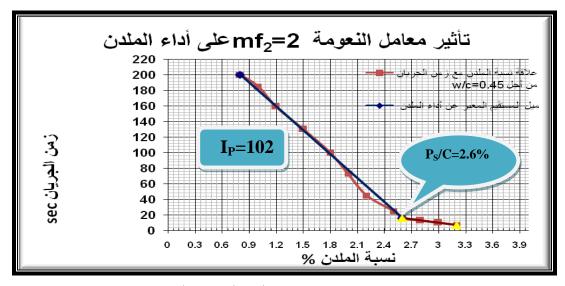
-1-دراسة تأثير معامل نعومة الرمل -1--1-الراسة تأثير معامل نعومة الرمل -1--1-الراسة تأثير معامل نعومة الرمل -1--1-الملدن الجدول (-1--1-الملدن المضافة في الخلطة.

 أثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الأولى.
--

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	193	0.8	1
0	176	1	2
1	155	1.2	3
2	130	1.5	4
3	110	1.8	5
4	90	2	6
5	62	2.2	7
7	32	2.5	8
9	16	2.7	9
11	13	3	10
14	9	3.2	11
19	6	3.5	12

أما الشكل (3-2) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=93$).

الشكل (2-3) تغير زمن الجريان للخلطة الأولى بتغير نسبة الملدن.


2-2-2-دراسة تأثير معامل نعومة الرمل mf₂₋2 على أداء الملدن في الخلطة البيتونية الثانية:

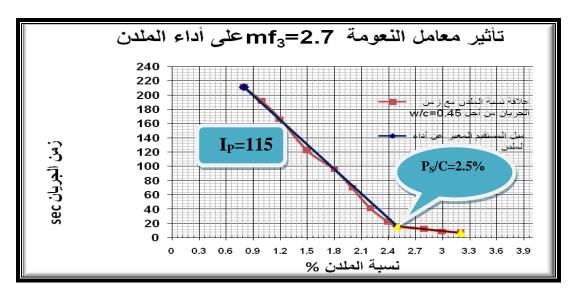
يبين الجدول (3-3) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

(3-3) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الثانية.
--

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	200	0.8	1
0	185	1	2
1	159	1.2	3
2	130	1.5	4
3	100	1.8	5
4	73	2	6
6	45	2.2	7
8	25	2.5	8
9	16	2.6	9
11	13	2.8	10
14	10	3	11
18	7	3.2	12

أما الشكل (3-3) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=102$).

الشكل(3-3) تغير زمن الجريان للخلطة الثانية بتغير نسبة الملدن.


3-2-3-دراسة تأثير معامل نعومة الرمل mf₃₋2.7 على أداء الملدن في الخلطة البيتونية الثالثة:

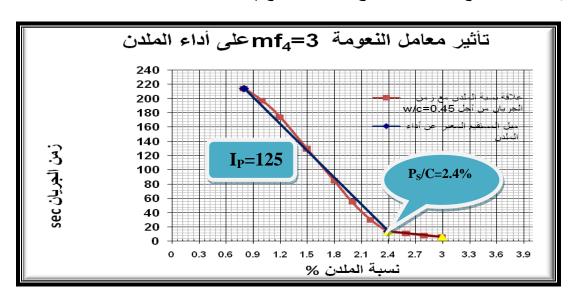
يبين الجدول (3-4) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

الخلطة البيتونية الثالثة.	زمن الحريان في	الملدن على العبوط ه	تأثب تغب نسبة ا	الحدول (3–4)
الصفاد البيولياد الناساد.	ربس الجريان كي	سدن حتی انہبوت و	تاتیر سیر سب	(- 3)

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	211	0.8	1
0	191	1	2
1	166	1.2	3
2	122	1.5	4
3	96	1.8	5
4	70	2	6
6	41	2.2	7
8	22	2.4	8
9	16	2.5	9
12	12	2.8	10
15	9	3	11
18	7	3.2	12

أما الشكل (3-4) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=115$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=115$).

الشكل(3-4) تغير زمن الجريان للخلطة الثالثة بتغير نسبة الملدن.


4-2-3-دراسة تأثير معامل نعومة الرمل mf₄₋3 على أداء الملدن في الخلطة البيتونية الرابعة:

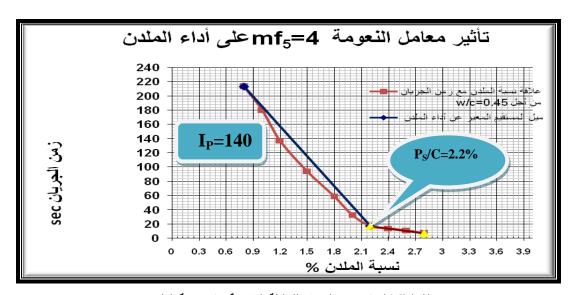
يبين الجدول (3-5) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

دول (3-5) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية الرابعة.
--

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	214	0.8	1
0	197	1	2
1	174	1.2	3
3	129	1.5	4
5	85	1.8	5
6	55	2	6
7	30	2.2	7
9	14	2.4	8
11	11	2.6	9
14	8	2.8	10
18	6	3	11

أما الشكل (3-5) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=125$).

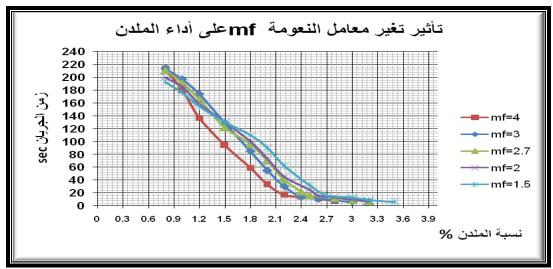
الشكل(3-5) تغير زمن الجريان للخلطة الرابعة بتغير نسبة الملدن.


3-2-5-دراسة تأثير معامل نعومة الرمل mf₅₋4 على أداء الملدن في الخلطة البيتونية الخامسة:

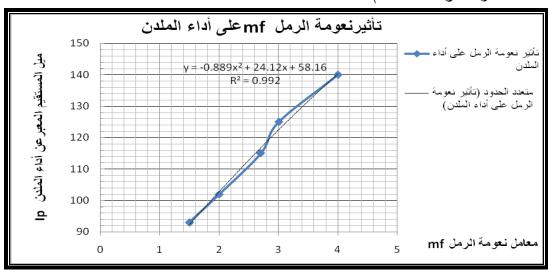
يبين الجدول (3-6) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

البيتونية الخامسة.	الجريان في الخلطة ا	على الهبوط و زمن	نغير نسبة الملدن	3-6) تأثير ن	الجدول (
--------------------	---------------------	------------------	------------------	--------------	----------

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	213	0.8	1
0	180	1	2
1	137	1.2	3
3	94	1.5	4
6	59	1.8	5
7	33	2	6
9	17	2.2	7
11	14	2.4	8
14	11	2.6	9
17	7	2.8	10


أما الشكل (3-6) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=140$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=140$).

الشكل(3-6) تغير زمن الجريان للخلطة الخامسة بتغير نسبة الملدن.


6-2-3-تحليل نتائج تغير قيم معامل نعومة الرمل mf على أداء الملدن في الخلطة البيتونية:

تم جمع نتائج اختبارات الخلطة الطرية المتمثلة بقيم زمن الجريان الموافق لنسبة الملان المتغيرة و المعبر عنها بمنحنيات الإشباع السابقة لكل خلطة بيتونية يختلف فيها قيم معامل نعومة الرمل المستخدم ل دراسة تأثير تغير قيم معامل نعومة الرمل على أداء الملان فيها، إذ لا يختلف الشكل العام لمخطط السلوك الريولوجي لجميع الخلطات البيتونية السابقة كما هو واضح في الشكل (3-7) أدناه ، تختلف فقط قيمة ميل المستقيم Ip التي تم تعريفها سابقاً. هذا المعيار الذي يحكم السلوك الريولوجي للخلطة الطرية بطريقة رياضية.

الشكل (3-7) مقارنة تأثير تغير معامل نعومة الرمل على أداء الملدن في الخلطة الطرية.

و بجمع هذه النتائج عند حساب ميل كل منحني إشباع بجزئه الأول على حدى تمكنا من رسم المنحي الموضح بالشكل (3-8) أدناه الذي يمثل علاقة تغير أداء الملدن (المتمثل بميل المستقيم (I_P) في الخلطة بدلالة معامل نعومة الرمل المستخدم.

الشكل (8-3) تأثير نعومة الرمل mf على أداء الملدن.

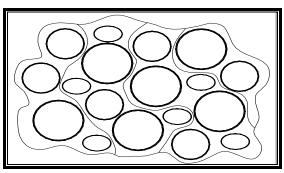
يمكن الباس المنحني الذي يعبر عن أداء الملدن بدلالة قيم معامل نعومة الرمل المستخدم بجزء من قطع مكافئ أي معادلة كثير حدود من الدرجة الثانية وفق المعادلة التنبؤئية التالية:

$IP = -0.889*(mf)^2 + 24.12*mf + 58.16$

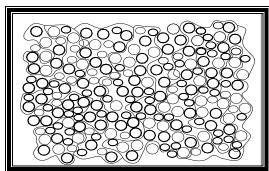
حيث تدل المتغيرات على:

IP: قيمة ميل المستقيم المعبر عن أداء الملدن في الخلطة البيتونية.

 \mathbf{mf} : قيمة معامل نعومة الرمل المستخدم التي تتراوح في المجال (4<1.5).


بلغت قيمة معامل الارتباط الخاص بالمعادلة السابقة القيمة (\mathbf{r}^2 =0.992) و هي قيمة قريبة من الواحد مما يعنى أن المعادلة ملائمة لمنحنى البيانات بشكل جيد.

تصلح المعادلة التنبؤية السابقة لتقييم أداء الملدن عند قيم معاملات نعومة الرمل الاصطلاحية التي تتراوح في المجال (4.5-1.1).


حيث عظهر المنحني تحسن أداء الملدن كلما ازدادت قيمة معامل نعومة الرمل المستخدم في الخلطة البيتونية.

من الملاحظ تغير قيمة ميل المستقيم المعبر عن أداء الملدن من القيمة $I_P=93$ لأقل قيمة لمعامل $I_P=1.5$ لأكبر قيمة الرمل و قدرها: $I_P=140$.

قد يعزى ذلك بسطح البلل حيث يمكن تفسير هذه الظاهرة الموضحة في الشكل (8-9). يبين الشكل (A) الذي يمثل حبيبات رمل ناعمة بمعامل نعومة منخفض (1.5) (A) أنها تحتاج إلى تغلغل جزيئات الملان بكمية أكبر فيما بينها لتأمين الانزلاقية المناسبة و البلل الكافي لها، أما الشكل (A) فيمثل حبيبات رمل أكثر خشونة بمعامل نعومة (A) (A) تحتاج إلى كمية أقل من الملان لإحداث البلل اللازم للوصول إلى قابلية تشغيل للبيتون مماثلة.

الشكل (B) حبيبات رمل خشنة

الشكل (A) حبيبات رمل ناعمة

الشكل (3-9) تفسير ظاهرة تغير تأثير معامل نعومة الرمل على أداء الملدن في الخلطة الطرية.

3-3-دراسة تأثير المكافئ الرملي Es على أداء الملدن في الخلطة البيتونية:

لإنجاز هذه الدراسة التي تهدف إلى إعطاء نتائج عملية عن تأثير نظافة الرمل المستخدم على أداء الملدن في الخلطة البيتونية، احتاج العمل لأصناف من الرمال بدرجات متفاوتة من الشوائب و هو الأمر الذي يصعب حصره في الرمال الطبيعية مما استدعى تحضير ذلك مخبرياً عن طريق غسل كمية كافية من الرمل موضوع الدراسة على المنخل رقم 200 و تجفيف نواتج الغسل في فرن بدرجة حرارة (°105c) حيث أظهرت نتائج الاختبارات أنه بالإمكان الاعتماد على غسل الرمال مخبرياً للتغيير في قيم المكافئ الرملي واضح الذي يعد المؤشر الرئيسي على نسب الشوائب.

تم اعتماد تصميم الخلطة البيتونية الثالثة (mf_3 2.7) ذات التراكيب الموضحة في الجدول (3-7): الجدول (3-7) النسب الوزنية للخلطة البيتونية الثالثة.

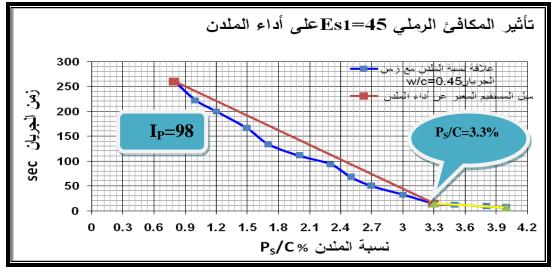
رمل ناعم mf =1.49	رمل خشن mf=3.99	,	بحص خشن 12.5-25mm	الماء	الإسمنت	المادة kg/m³
375	375	128	950	158	350	الخلطة3 mf ₃₌ 2.7

تحتوي الخلطة البيتونية على مزيج رملي (مرقية + نبكي) بنسب متساوية 50% رمل خشن و 50% رمل نعومة بمقدار \mathbf{mf}_3 2.7 نمت الاستفادة من هذه النسب في الحصول على خمسة خلطات بيتونية ذات المكافئ الرملي المتدرج من القيمة \mathbf{Es}_1 إلى القيمة \mathbf{Es}_{1} الموضحة في الجدول (3-8) أدناه المطلوبة لدراسة تأثير نظافة الرمل على أداء الملان.

الجدول (3-8) قيم المكافئ الرملي للخلطات البيتونية.

الخلطة10 Es ₅₌ 100	الخلطة9 Es ₂₌ 95	الخلطة8 Es ₂₌ 83	الخلطة7 Es ₂₌ 65	الخلطة6 Es ₁₌ 45	المكافئ الرملي Es
100	92	71	45	35	رمل ناعم
100	98	95	85	55	رمل خشن

أجريت أيضاً اختبارات القوام المتمثلة في حساب زمن الجريان للخلطات السابقة باستخدام جهاز المانيابيلميتر عند نسب مختلفة للملدن، حيث اعتمدت النسبة ($P_1/C\%=0.8$) كقيمة ابتدائية للملدن المستخدم بعد إجراء العديد من التجارب دونها لا يبدي الملدن أداءً ملحوظاً على قوام البيتون، ثم تم تصعيد النسبة P/C% تدريجياً حتى بلغت القيمة القصوى لها الخاصة بكل خلطة على حدا. حيث تعين المنحنيات التالية السلوك الريولوجي لهذه الخلطات المتغير بتغير نسبة الملدن لكل خلطة ذات المكافئ الرملى المختلف على حدى.


$E_{S_1=45}$ على أداء الملدن في الخلطة البيتونية السادسة: $E_{S_1=45}$

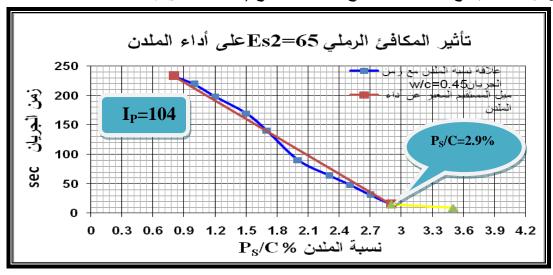
يبين الجدول (3-9) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

البيتونية السادسة.	في الخلطة	زمن الحربان	على العبوط و	نسبة الملدن	تأثب تغب	الحدول (3-9)
	ے ،		J - J. G-		<i></i>	() UJ

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	260	0.8	1
0	222	1	2
0	200	1.2	3
1	166	1.5	4
2	134	1.7	5
2	111	2	6
4	94	2.3	7
5	68	2.5	8
6	50	2.7	9
8	33	3	10
9	15	3.3	11
11	13	3.5	12
15	9	3.8	13
18	7	4	14

أما الشكل (3-10) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=98$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=98$).

الشكل (3-10) تغير زمن الجريان للخلطة السادسة بتغير نسبة الملدن.


E_{s_2-65} على أداء الملدن في الخلطة البيتونية السابعة:

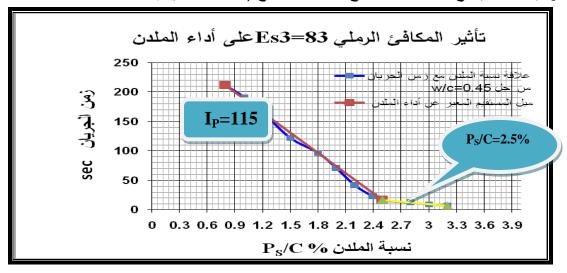
يبين الجدول (3-10) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

بر تغير نسبة الملدن على الهبوط و زمن الجريان في الخلطة البيتونية السابعة.

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	233	0.8	1
0	219	1	2
0	198	1.2	3
1	169	1.5	4
2	140	1.7	5
4	90	2	6
5	64	2.3	7
6	48	2.5	8
8	31	2.7	9
9	15	2.9	10
11	13	3.2	11
15	9	3.5	12

أما الشكل (3-11) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=104$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.9\%$).

الشكل (3-11) تغير زمن الجريان للخلطة السابعة بتغير نسبة الملدن.

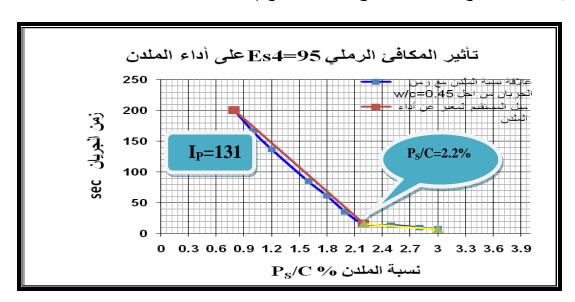

3-3-3-دراسة تأثير المكافئ الرملي $Es_{3-}83$ على أداء الملدن في الخلطة البيتونية الثامنة:

يبين الجدول (3-11) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

الخلطة البيتونية الثامنة.	ط و زمن الحربان في	نسية الملدن على الهيو	الجدول (3-11) تأثير تغير

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	211	0.8	1
0	191	1	2
1	166	1.2	3
2	122	1.5	4
3	96	1.8	5
4	70	2	6
6	41	2.2	7
8	22	2.4	8
9	16	2.5	9
12	12	2.8	10
15	9	3	11
19	7	3.2	12

أما الشكل (3-12) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=115$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=115$).

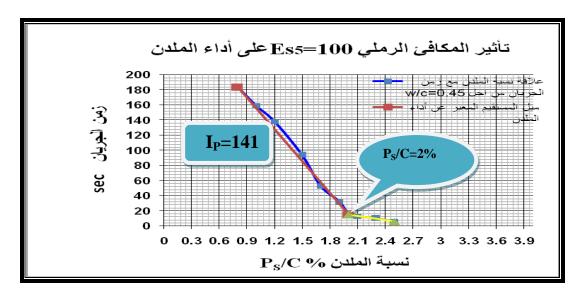

الشكل (3-12) تغير زمن الجريان للخلطة الثامنة بتغير نسبة الملدن.

3-3-4-دراسة تأثير المكافئ الرملي Es4-95 على أداء الملدن في الخلطة البيتونية التاسعة:

يبين الجدول (3-12) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	200	0.8	1
0	166	1	2
1	137	1.2	3
4	85	1.6	4
5	61	1.8	5
7	35	2	6
9	16	2.2	7
12	14	2.5	8
15	10	2.8	9
19	7	3	10

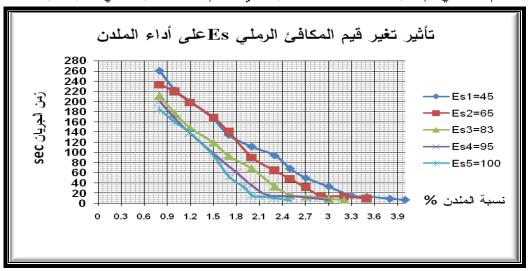
أما الشكل (3-13) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=131$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.2\%$).


الشكل (3-13) تغير زمن الجريان للخلطة التاسعة بتغير نسبة الملدن.

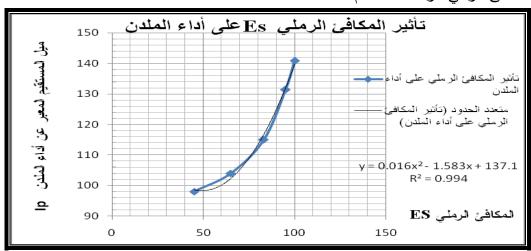
 Es_{5-} على أداء الملدن في الخلطة البيتونية العاشرة Es_{5-} على أداء الملدن في الخلطة البيتونية العاشرة يبين الجدول (s_{5-} أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

البيتونية العاشرة.	ن في الخلطة	زمن الحاياة	على الهوط و	نسبة الملدن	ا تأثد تغد	الحدول (3-1)
البيس بياء المحاصري.	ے کی است	رجن اجروار	سی اسیوب و	سبب است	، حیر حیر	(13 3) ()

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	184	0.8	1
0	159	1	2
1	138	1.2	3
3	94	1.5	4
6	53	1.7	5
8	32	1.9	6
9	15	2	7
11	13	2.1	8
15	10	2.3	9
17	6	2.5	10


أما الشكل (3-14) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=141$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2\%$).

الشكل (3-14) تغير زمن الجريان للخلطة العاشرة بتغير نسبة الملدن.


3-3-6-تحليل نتائج تأثير تغير المكافئ الرملي Es على أداء الملدن في الخلطة البيتونية:

تم جمع نتائج اختبارات الخلطة الطرية المتمثلة بقيم زمن الجريان الموافق لنسبة الملدن المتغيرة و المعبر عنها بمنحنيات الإشباع السابقة لكل خلطة بيتونية يختلف فيها قيم المكافئ الرملي للرمل المستخدم ل دراسة تأثير تغير قيم المكافئ الرملي للرمل على أداء الملدن فيها ، إذ لا يختلف الشكل العام لمخطط السلوك الريولوجي لجميع الخلطات البيتونية السابقة كما هو واضح في الشكل (3-15) أدناه ، فقط تختلف قيمة ميل المستقيم IP التي تم تعريفها سابقاً. هذا المعيار الذي يحكم السلوك الريولوجي بطريقة رياضية.

الشكل (3-15) مقارنة تأثير تغير قيم المكافئ الرملي على أداء الملدن في الخلطة الطرية.

و بجمع هذه النتائج عند حساب ميل كل منحني إشباع بجزئه الأول على حدى تمكنا من رسم المنحي الموضح بالشكل ((I_P) أدناه الذي يمثل تغير أداء الملدن (المتمثل بميل المستقيم بدلالة المكاقئ الرملي للرمل المستخدم.

الشكل (3-16) تأثير المكافئ الرملي ES على أداء الملدن.

يمكن الباس المنحني الذي يعبر عن أداء الملدن بدلالة قيم المكافئ الرملي للرمل المستخدم بجزء من قطع مكافئ أي معادلة كثير حدود من الدرجة الثانية وفق المعادلة التنبؤئية التالية:

 $IP = 0.016*(Es)^2 - 1.583*Es + 137.1$

حيث:

IP: قيمة ميل المستقيم المعبر عن أداء الملدن في الخلطة البيتونية.

.(45 < Es < 100) قيمة المكافئ الرملي للرمل المستخدم التي تتراوح في المجال (.45 < Es < 100).

بلغت قيمة معامل الارتباط الخاص بالمعادلة السابقة القيمة (\mathbf{r}^2 =0.994) و هي قيمة قريبة من الواحد مما يعنى أن المعادلة ملائمة لمنحنى البيانات بشكل جيد.

حيث عظهر المنحني تحسن أداء الملدن كلما ازدادت قيمة المكافئ الرملي للرمل المستخدم في الخلطة البيتونية.

من الملاحظ تغير قيمة ميل المستقيم المعبر عن أداء الملدن من القيمة $I_P=98$ لأقل قيمة للمكافئ الرملي و قدرها: $E_S=100$. $E_S=45$ ، إلى القيمة $I_P=141$ لأكبر قيمة للمكافئ الرملي و قدرها: $E_S=45$

يعود ذلك إلى التأثير السلبي للشوائب العضوية و الغضارية الناعمة الموجودة في الرمل وذلك عن طريق شراهتها لامتصاص السوائل و منها الملدنات ، إذ تمتص كمية كبيرة منها لحظة إضافتها و هو ما يعيق فعل الملدن الفيزيائي بوجود هذه الشوائب و إلغاء دوره الأساسي في بعثرة حبيبات الإسمنت في المحلول الطري قبل التصلب.

4-3-دراسة تأثير القطر الأعظمي للحصويات Dmax على أداء الملدن في الخلطة البيتونية:

قمنا لهذا الغرض بتحضير خلطات بيتونية متشابهة فيما بينها بطريقة التصميم و معامل نعومة الرمل المستخدم (mf=2.7) و نظافة الرمل و عيار الإسمنت و نسبة الإسمنت إلى الماء w/c=0.45 و تختلف فقط بقيمة القطر الأعظمي للحصويات المستخدمة Dmax، حيث تمت دراسة تأثير Dmax على أداء الملدن في الخلطات البيتونية من خلال إجراء اختبار القوام و قابلية التشغيل على الخلطات السابقة. تم في الجدول (3-14) تحديد تراكيب الخلطات البيتونية المتغيرة مع تغير قيم القطر الأعظمي للحصويات المستخدمة في البحث.و التي تم اجراء الاختبارات عليها لهذا الغرض:

الجدول (3-14) تراكيب الخلطات البيتونية مع تغير قيم القطر الأعظمي للحصويات المستخدمة في البحث.

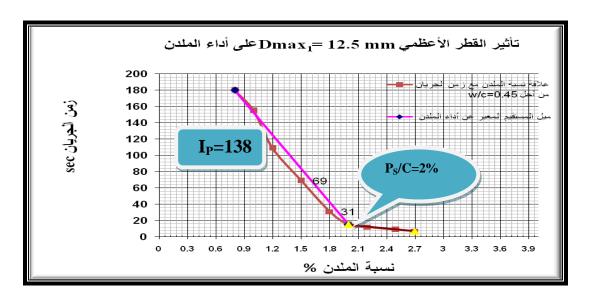
الخلطة رقم 14	الخلطة رقم 13	الخلطة رقم 12	الخلطة رقم 11	المادة
Dmax ₄₌ 37.5mm	Dmax ₃₌ 25mm	Dmax ₂₌ 19mm	Dmax ₁₌ 12.5mm	kg/m ³
350	350	350	350	الإسمنت
158	158	158	158	الماء
1093	1022	1059	960	بحص
365	410	384	425	رمل خشن
365	410	384	425	رمل ناعم

أجريت اختبارات القوام المتمثلة في حساب زمن الجريان للخلطات السابقة باستخدام جهاز المانيابيلميتر عند نسب مختلفة للملدن حيث اعتمدت النسبة ($0.8 = P_1/C$) كقيمة ابتدائية للملدن المستخدم بعد إجراء العديد من التجارب دونها لا يبدي الملدن أداءاً ملحوظاً على قوام البيتون، ثم تم تصعيد النسبة P/C تدريجياً حتى بلغت القيمة القصوى لها الخاصة بكل خلطة على حدى.

حيث تم رسم منحنيات تغير زمن الجريان بدلالة نسبة الملدن للخلطات السابقة التي يتغير فيها بارمتر واحد فقط و هو القطر الأعظمي للحصويات من القيمة $\mathbf{Dmax}_{1=12.5mm}$ إلى القيمة

$.Dmax_{4=}37.5mm$

تعين المنحنيات التالية السلوك الريولوجي لهذه الخلطات المتغير بتغير نسب الملدن لكل خلطة ذات القطر الأعظمي للحصويات المختلف على حدى.

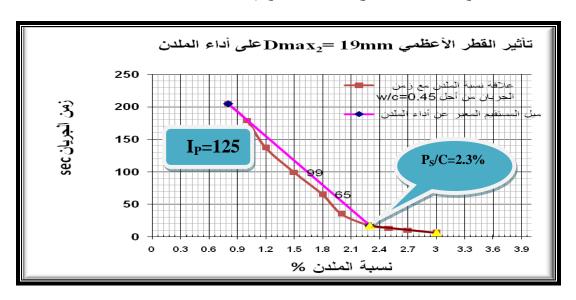

الخلطة المدن في الخلطة $Dmax_{1=}12.5mm$ على أداء الملدن في الخلطة الميتونية رقم 11:

يبين الجدول (3-12) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

لخلطة البيتونية رقم /11/.	الهبوط و زمن الجريان لا	نغير نسبة الملدن على	الجدول (3-15) تأثير أ
---------------------------	-------------------------	----------------------	-----------------------

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	180	0.8	1
0	155	1	2
1	109	1.2	3
4	69	1.5	4
7	31	1.8	5
9	15	2	6
11	11 12 2.2		7
15	9 2.5		8
17	7	2.7	9

أما الشكل (3-17) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=138$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=138$).


الشكل (3-17) تغير زمن الجريان للخلطة رقم /11/ بتغير نسبة الملدن.

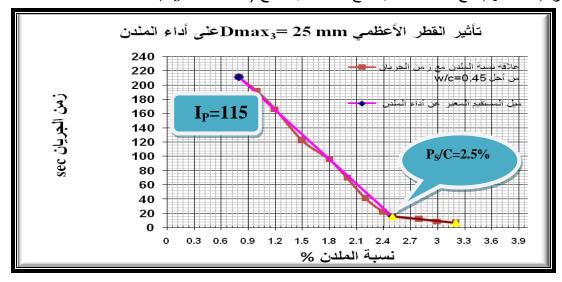
2-4-3-دراسة تأثير القطر الأعظمي للحصويات Dmax2-19mm على أداء الملدن في الخلطة البيتونية رقم /12/:

يبين الجدول (3-16) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

الجدول (3-16) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /12/.					
slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات		
0	205	0.8	1		
0	179	1	2		
1	137	1.2	3		
3	99	1.5	4		
6	65	1.8	5		
7	35	2	6		
9	17	2.3	7		
11	13	2.5	8		
13	10	2.7	9		
17	(2	10		

أما الشكل (3-18) فيوضح منحنى الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب . ($P_S/C=2.3\%$) و قدره ($I_P=125$) مع تحديد حد الإشباع بالملدن و البالغ

الشكل (3-18) تغير زمن الجريان للخلطة رقم /12/ بتغير نسبة الملدن.


3-4-3-دراسة تأثير القطر الأعظمي للحصويات Dmax₃₌25mm على أداء الملدن في الخلطة البيتونية رقم /13/:

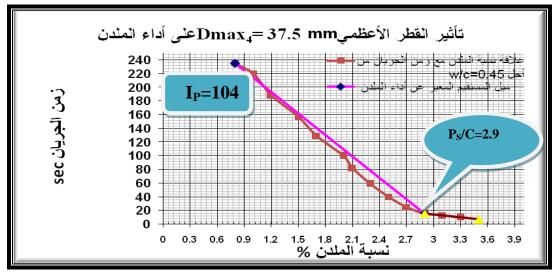
يبين الجدول (3-17) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

لخلطة البيتونية رقم /13/.	الهبوط و زمن الجريان ل	تغير نسبة الملدن على	الجدول (3-17) تأثير
---------------------------	------------------------	----------------------	---------------------

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات	
0	211	0.8	1	
0	191	1	2	
1	166	1.2	3	
2	122	1.5	4	
3	96	1.8	5	
4	70	2	6	
6	41	2.2	7	
8	22	2.4	8	
9	16	2.5	9	
12	12	2.8	10	
15	9	3	11	
19	7	3.2	12	

أما الشكل (3-19) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=115$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.5\%$).

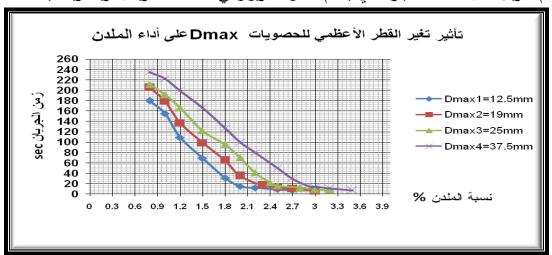
الشكل (3-19) تغير زمن الجريان للخلطة رقم /13/ بتغير نسبة الملدن.


4-4-4-دراسة تأثير القطر الأعظمي للحصويات Dmax₄₋37.5mm على أداء الملدن في الخلطة البيتونية رقم /14/:

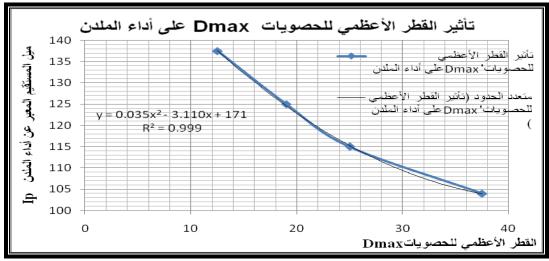
يبين الجدول (3-18) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

قم /14/.	طة البيتونية ر	الجريان للخله	بط و زمن	على الهير	نسبة الملدن	أتثير تغير	الجدول (3-18)
----------	----------------	---------------	----------	-----------	-------------	------------	---------------

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	235	0.8	1
0	222	1	2
1	199	1.2	3
2	166	1.5	4
3	127	1.8	5
3	100	2	6
4	80	2.2	7
6	50	2.5	8
7	30	2.7	9
9	16	2.9	10
11	14	3	11
14	11	3.2	12
19	7	3.5	13


أما الشكل (3-20) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=104$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.9\%$).

الشكل (3-20) تغير زمن الجريان للخلطة رقم /14/ بتغير نسبة الملدن.


5-4-3-تحليل نتائج تغير القطر الأعظمي للحصويات Dmax على أداء الملدن في الخلطة البيتونية:

تم جمع نتائج اختبارات الخلطة الطرية المتمثلة بقيم زمن الجريان الموافق لنسبة الملدن المتغيرة و المعبر عنها بمنحنيات الإشباع السابقة لكل خلطة بيتونية يختلف فيها قيم قيم القطر الأعظمي للحصويات لدراسة تأثير التغير على أداء الملدن فيها ، إذ لا يختلف الشكل العام لمخطط السلوك الريولوجي لجميع الخلطات البيتونية السابقة كما هو واضح في الشكل (5-12) أدناه ، فقط تختلف قيمة ميل المستقيم 1 التي تم تعريفها سابقاً. هذا المعيار الذي يحكم السلوك الريولوجي للخلطة الطرية بطريقة رياضية.

الشكل (21-3) مقارنة تأثير تغير قيم القطر الأعظمي للحصويات على أداء الملدن في الخلطة البيتونية .

و بجمع هذه النتائج عند حساب ميل كل منحني إشباع بجزئه الأول على حدا تمكنا من رسم المنحي الموضح بالشكل ((I_P) أدناه الذي يمثل تغير أداء الملدن (المتمثل بميل المستقيم بدلالة القطر الأعظمي للحصويات المستخدمة.

الشكل (22-3) تأثير القطر الأعظمي للحصويات Dmax على أداء الملدن.

يمكن الباس المنحني الذي يعبر عن أداء الملدن بدلالة القطر الأعظمي للحصويات المستخدمة بجزء من قطع مكافئ أي معادلة كثير حدود من الدرجة الثانية وفق المعادلة التنبؤئية التالية:

$IP = 0.035*(Dmax)^2 - 3.110*Dmax + 171$

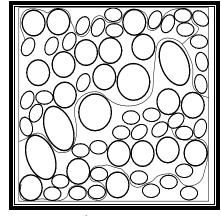
حبث:

IP: قيمة ميل المستقيم المعبر عن أداء الملدن في الخلطة البيتونية.

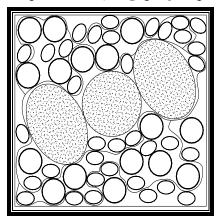
Dmax: القطر الأعظمي للحصوبات المستخدمة التي تتراوح في المجال:

.(12.5 mm < D max < 37.5 mm.)

بلغت قيمة معامل الارتباط الخاص بالمعادلة السابقة القيمة $(r^2=0.999)$ و هي قيمة قريبة من الواحد مما يعنى أن المعادلة ملائمة لمنحنى البيانات بشكل جيد.


تصلح المعادلة التنبؤية السابقة لتقييم أداءالملدن في الخلطة الطرية عند قيم القطر الأعظمي للحصويات الاصطلاحية المستخدمة في الخلطات البيتونية والتي تتراوح في المجال (5-45mm).

حيث يظهر المنحني تحسن أداء الملدن كلما انخفضت قيمة القطر الأعظمي للحصويات المستخدمة في الخلطة البيتونية.


من الملاحظ تغير قيمة ميل المستقيم المعبر عن أداء الملدن من القيمة $I_P=104$ لأكبر قيمة للقطر الأعظمي و قدرها: $I_P=138$ الأعظمي و قدرها: $I_P=138$ الملدن من القيمة قيمة للقطر الأعظمي و قدرها: $I_P=138$.

تحسن الحصويات ذات القطر Dmax=12.5mm من أداء الملدن و عليه زيادة المقاس الاعتباري للقطر الأعظمي للحصويات يقلل من هذا الأداء في الخلطة

تعمل الملدنات عادة على بعثرة حبيبات الإسمنت و مثيلاتها من المواد الناعمة ضمن المحلول الطري بين حصويات البيتون، سيكون هذا الأداء أفضل كلما كانت فوارق الحجوم أقل بين ملاط المواد الناعمة و الهيكل الحصوي كما هو موضح في الشكل (3-23). و هو ما يفسر انخفاض أداء الملدن و إعاقة حركته و انزلاق حبيباته كلما كبر المقاس الاعتباري للقطر الأعظمي للحصويات الخشنة.

الشكل (B) حصويات بأقطار صغيرة. تحسن أداء الملدن

الشكل (A) حصويات بأقطار كبيرة

انخفاض أداء الملدن.....

الشكل (3-23) تفسير ظاهرة تغير قيم القطر الأعظمي للحصويات على أداء الملدن في الخلطة الطرية.

3-5-دراسة تأثير انتظام الحصويات Cu على أداء الملدن في الخلطة البيتونية:

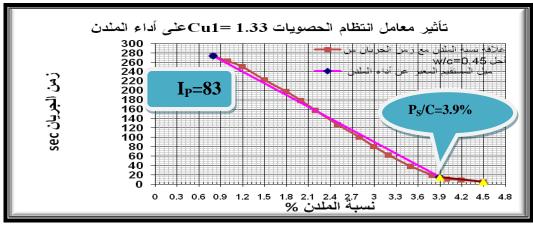
قمنا لهذا الغرض بتحضير خلطات بيتونية متشابهة فيما بينها بطريقة التصميم و معامل الرمل المستخدم w/c=0.45 و w/c=0.45 و القطر الأعظمي (mf=2.7) و نظافة الرمل و عيار الإسمنت و نسبة الإسمنت إلى الماء w/c=0.45 و القطر الأعظمي للحصويات المستخدمة w/c=0.45 تختلف فقط بقيمة معامل انتظام الحصويات، حيث تمت دراسة تأثير w/c=0.45 على أداء الملدن في الخلطات البيتونية من خلال إجراء اختبار القوام و قابلية التشغيل.

تم في الجدول (3-19) تحديد تراكيب الخلطات البيتونية المتغيرة مع تغير قيم معامل انتظام الحصويات الخشنة المستخدمة في البحث.و التي تم اجراء الاختبارات عليها لهذا الغرض:

الجدول (3-19) تراكيب الخلطات البيتونية مع تغير قيم معامل انتظام الحصويات المستخدمة في البحث.
--

الخلطة رقم19 Cu ₅₌ 3.75	الخلطة رقم18 Cu ₄₌ 2.57	الخلطة رقم17 Cu ₃₌ 1.96	الخلطة رقم 16 Cu ₂₌ 1.62	الخلطة رقم15 Cu ₁₌ 1.33	المادة kg/m ³
350	350	350	350	350	الإسمنت
158	158	158	158	158	الماء
1130	1093	1077	1023	1039	بحص
346	365	375	400	392	رمل خشن
346	365	375	400	392	رمل ناعم

أجريت اختبارات القوام المتمثلة في حساب زمن الجريان للخلطات السابقة باستخدام جهاز المانيابيلميتر عند نسب مختلفة للملدن، حيث اعتمدت النسبة $(P_1/C)=0.8$) كقيمة ابتدائية للملدن المستخدم بعد إجراء العديد من التجارب دونها لا يبدي الملدن أداءاً ملحوظاً على قوام البيتون، ثم تم تصعيد النسبة P/C0 تدريجياً حتى بلغت القيمة القصوى لها الخاصة بكل خلطة على حدى .


تم رسم منحنيات تغير زمن الجريان بدلالة نسبة الملدن للخلطات السابقة التي يتغير فيها بارمتر واحد فقط و هو معامل انتظام الحصويات الخشنة من القيمة ${\rm Cu}_{1=}1.33$ إلى القيمة ${\rm Cu}_{5=}3.75$. تعين المنحنيات التالية السلوك الريولوجي لهذه الخلطات المتغير بتغير نسبة الملدن لكل خلطة ذات معاملات الانتظام المختلفة للحصويات الخشنة المدروسة على حدى.

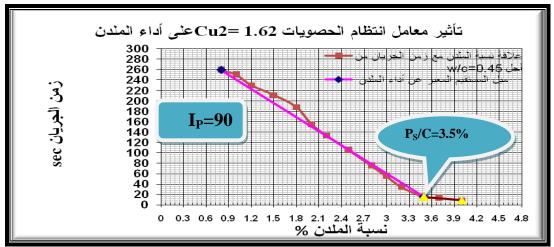
${ m Cu_{1=}}1.33$ على أداء الملدن في الخلطة البيتونية رقم الحصويات ${ m Cu_{1=}}1.33$ على أداء الملدن في الخلطة البيتونية رقم /15/:

يبين الجدول (3-20) أدناه تغير قيم هبوط الخلطة و زمن الجريان بحسب نسب الملدن المضافة. الجدول (3-20) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /15/.

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	273	0.8	1
0	262	1	2
0	250	1.2	3
0	222	1.5	4
1	197	1.8	5
1	178	2	6
2	157	2.2	7
3	127	2.5	8
4	100	2.8	9
4	80	3	10
5	62	3.2	11
7	38	3.5	12
9	19	3.8	13
9	15	3.9	14
11	11	4	15
14	9	4.2	16
19	5	4.5	17

أما الشكل (3-24) فيوضح منحني الإشباع لهذه الخلطة مع تحديد (I_P =83)و (P_S /C=3.9%).

الشكل (3-24) تغير زمن الجريان للخلطة رقم /15/ بتغير نسبة الملدن.

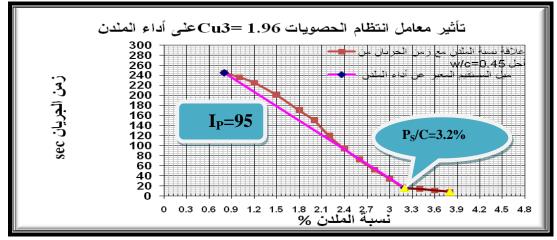

${ m Cu}_2=1.62$ على أداء الملدن في الخلطة البيتونية رقم ${ m Cu}_2=1.62$ على أداء الملدن في الخلطة البيتونية رقم ${ m Cu}_2=1.62$:

يبين الجدول (3-21) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

اتەنىلە قە /16/	نمن الحديان الخاطة الد	a bout to	تغد نسبة المادن	الجدول (3-21) تأثير
ينونيه رقم /10/.	رمن الجريان للخلطة البي	على الهيوط و (تغير نسبه الملدن	الجدول (21-3) تابير

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	259	0.8	1
0	250	1	2
0	230	1.2	3
0	211	1.5	4
1	188	1.8	5
2	155	2	6
3	133	2.2	7
4	105	2.5	8
6	75	2.8	9
7	55	3	10
8	34	3.2	11
9	15	3.5	12
12	13	3.7	13
16	9	4	14

أما الشكل (3-25) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=90$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=90$).

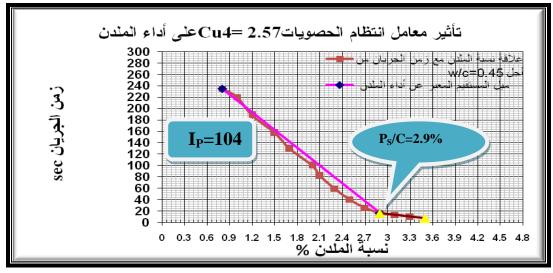

الشكل (3-25) تغير زمن الجريان للخلطة رقم /16/ بتغير نسبة الملدن.

 $Cu_{3=}1.96$ على أداء الملدن في الخلطة البيتونية رقم $Cu_{3=}1.96$ على أداء الملدن في الخلطة البيتونية رقم 1.7:

يبين الجدول (3-22) أدناه تغير قيم هبوط الخلطة الطرية و زمن الجريان بحسب نسب الملدن المضافة. الجدول (3-22) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /17/.

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	245	0.8	1
0	236	1	2
0	225	1.2	3
0	200	1.5	4
1	170	1.8	5
2	150	2	6
3	119	2.2	7
4	94	2.4	8
6	72	2.6	9
7	52	2.8	10
8	34	3	11
9	16	3.2	12
12	14	3.4	13
15	11	3.6	14
18	8	3.8	15

أما الشكل (3-26) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=95$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=95$).

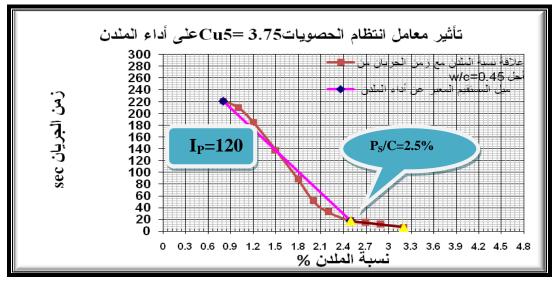

الشكل (3-26) تغير زمن الجريان للخلطة رقم /17/ بتغير نسبة الملدن.

$Cu_{4=}2.57$ على أداء الملدن في الخلطة البيتونية رقم $Cu_{4=}2.57$ على أداء الملدن في الخلطة البيتونية رقم 18/:

يبين الجدول (3-23) أدناه تغير قيم هبوط الخلطة الطرية و زمن الجريان بحسب نسب الملدن المضافة. الجدول (3-23) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /18/.

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	235	0.8	1
0	222	1	2
1	199	1.2	3
2	166	1.5	4
3	127	1.8	5
3	100	2	6
4	80	2.2	7
6	50	2.5	8
7	30	2.7	9
9	16	2.9	10
11	14	3	11
14	11	3.2	12
19	7	3.5	13

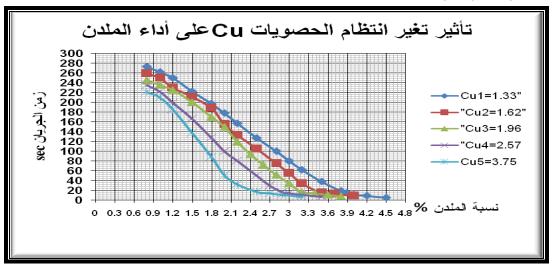
أما الشكل (3-27) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=104$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.9\%$).


الشكل (2-27) تغير زمن الجريان للخلطة رقم /18/ بتغير نسبة الملدن.

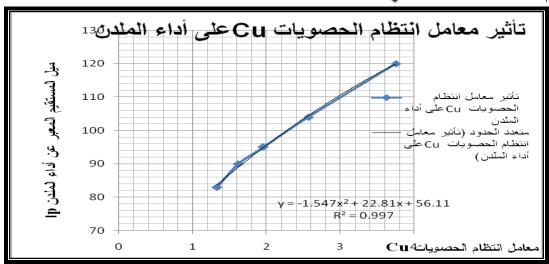
5-5-3 على أداء الملدن في الخلطة البيتونية رقم ${\rm Cu}_{5=}3.75$ حلى أداء الملدن في الخلطة البيتونية رقم 19/:

يبين الجدول (3-24) أدناه تغير قيم هبوط الخلطة الطرية و زمن الجريان بحسب نسب الملدن المضافة. الجدول (3-24) تأثير تغير نسبة الملدن على الهبوط و زمن الجريان للخلطة البيتونية رقم /19/.

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	221	0.8	1
0	210	1	2
1	185	1.2	3
2	137	1.5	4
3	88	1.8	5
6	51	2	6
7	32	2.2	7
9	17	2.5	8
11	14	2.7	9
14	11	2.9	10
19	7	3.2	11


أما الشكل (3-28) فيوضح منحني الإشباع هذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=120$).

الشكل (3-28) تغير زمن الجريان للخلطة رقم /19/ بتغير نسبة الملدن.


3-5-6-تحليل نتائج تأثير تغير معامل انتظام الحصويات على أداء الملدن في الخلطة البيتونية:

تم جمع نتائج اختبارات الخلطة الطرية المتمثلة بقيم زمن الجريان الموافق لنسبة الملان المتغيرة و المعبر عنها بمنحنيات الإشباع السابقة لكل خلطة بيتونية يختلف فيها قيم معامل الانتظام للحصويات المستخدمة لهراسة تأثير تغير قيم معامل الانتظام للحصويات على أداء الملان فيها، إذ لا يختلف الشكل العام لمخطط السلوك الريولوجي لجميع الخلطات البيتونية السابقة كما هو واضح في الشكل (3-29) أدناه، فقط تختلف قيمة ميل المستقيم IP التي تم تعريفها سابقاً هذا المعيار الذي يحكم السلوك الريولوجي للخلطة الطرية بطريقة رياضية.

الشكل (3-29) مقارنة تأثير تغير قيم معامل انتظام الحصويات على أداء الملدن في الخلطة البيتونية.

و بجمع هذه النتائج عند حساب ميل كل منحني إشباع بجزئه الأول على حدا تمكنا من رسم المنحي الموضح بالشكل (30-3) أدناه الذي يمثل تغير أداء الملدن المتمثل بميل المستقيم I_P بدلالة قيم معامل انتظام الحصويات المستخدمة في البحث.

الشكل (30-3) تأثير معامل ان تظام الحصوبات Cu على أداء الملدن.

يمكن الباس المنحني الذي يعبر عن أداء الملدن بدلالة معامل انتظام الحصويات المستخدمة بجزء من قطع مكافئ أي معادلة كثير حدود من الدرجة الثانية وفق المعادلة التنبؤئية التالية:

$$IP = -1.547*(Cu)^2 + 22.81*Cu + 56.11$$

حيث:

IP: قيمة ميل المستقيم المعبر عن أداء الملدن في الخلطة البيتونية.

 ${
m Cu}$: معامل انتظام الحصويات المستخدمة التي تتراوح في المجال: ${
m (1.33}{<}~{
m Cu}$

بلغت قيمة معامل الارتباط الخاص بالمعادلة السابقة القيمة $(r^2=0.997)$ و هي قيمة قريبة من الواحد مما يعنى أن المعادلة ملائمة لمنحنى البيانات بشكل جيد.

تصلح المعادلة التنبؤية السابقة لتقييم أداءالملدن عند قيم معامل انتظام الحصويات الخشنة التي تتراوح في المجال (6-1).

يظهر المنحني تحسن أداء الملدن كلما ازدادت قيمة معامل انتظام الحصويات المستخدمة في الخلطة البيتونية.

من الملاحظ تغير قيمة ميل المستقيم المعبر عن أداء الملدن من القيمة I_P لأقل قيمة لمعامل انتظام الحصويات و قدرها: Cu القيمة I_P لأكبر قيمة لمعامل انتظام الحصويات و قدرها: Cu . Cu . Cu

يعود ذلك إلى سهولة تغلغل العجينة الناعمة التي تحتوي على الملدن ضمن هيكل الحصويات جيد التدرج و الذي تقل فيه المسامية، و هو ما يجعل حركة الملدن ضمن هذا الحيز في الهيكل الحصوي أكثر انسيابية، مما يعنى أداءً أفضل للملدن كلما تحسن التدرج الحبي و ارتفعت قيمة المعامل Cu.

6-3-دراسة تأثير نعومة الإسمنت SSc على أداء الملدن في الخلطة البيتونية:

قمنا لهذا الغرض بتحضير خلطات بيتونية متشابهة فيما بينها بطريقة التصميم و معامل نعومة الرمل المستخدم (mf=2.7) و نظافة الرمل و عيار الإسمنت و نسبة الإسمنت إلى الماء w/c=0.45 و القطر الأعظمي للحصويات المستخدمة (max=25mm)، تختلف فقط بقيمة نعومة الإسمنت ، حيث تمت دراسة تأثير sc على أداء الملان في الخلطات البيتونية من خلال إجراء اختبار القوام و قابلية التشغيل.

تم اعتماد تصميم الخلطة البيتونية الثالثة ($mf_3=2.7$) ذات التراكيب الموضحة في الجدول السابق (sharphi=0.7): تمت الاستفادة من النسب الوزنية الخاصة بالخلطة البيتونية الثالثة في الحصول على أربع خلطات بيتونية متدرجة بقيم معامل نعومة الإسمنت المتدرجة من القيمة معامل نعومة الإسمنت المتدرجة في الجدول (sharphi=0.7). و المطلوبة لدراسة تأثير نعومة الإسمنت على أداء الملدن.

الجدول (3-25) قيم نعومة الإسمنت للخلطات البيتونية المستخدمة في البحث.

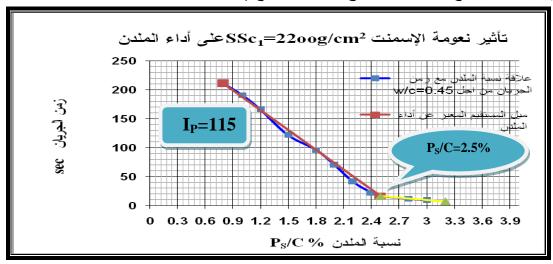
الخلطة 23	الخلطة 22	الخلطة 21	الخلطة 20	نعومة الإسمنت
$SSc_{4=}3000cm^2/g$	$SSc_{3=}2800cm^2/g$	$SSc_{2}=2500cm^2/g$	$SSc_{1=}2200cm^2/g$	SSc

أجريت اختبارات القوام المتمثلة في حساب زمن الجريان للخلطات السابقة باستخدام جهاز المانيابيلميتر عند نسب مختلفة للملدن حيث اعتمدت النسبة ($P_1/C\%=0.8$) كقيمة ابتدائية للملدن المستخدم بعد إجراء العديد من التجارب دونها لا يبدي الملدن أداءاً ملحوظاً على قوام البيتون، ثم تم تصعيد النسبة P/C% تدريجياً حتى بلغت القيمة القصوى لها الخاصة بكل خلطة على حدى .

تم رسم منحنيات تغير زمن الجريان بدلالة نسبة الملدن للخلطات السابقة التي يتغير فيها بارمتر واحد فقط و هو معامل نعومة الإسمنت المستخدم من القيمة $SSc_{1=}2200cm^2/g$ إلى القيمة

$.SSc_{4=}3000cm^2/g$

تعين المنحنيات التالية السلوك الريولوجي لهذه الخلطات المتغير بتغير نسب الملدن لكل خلطة ذات معاملات النعومة المختلفة للإسمنت المستخدم في البحث على حدا.


$SSc_{1}=2200 cm^{2}/g$ على أداء الملدن في الخلطة البيتونية رقم $SSc_{1}=2200 cm^{2}/g$ على أداء الملدن في الخلطة البيتونية رقم $20/cm^{2}/g$:

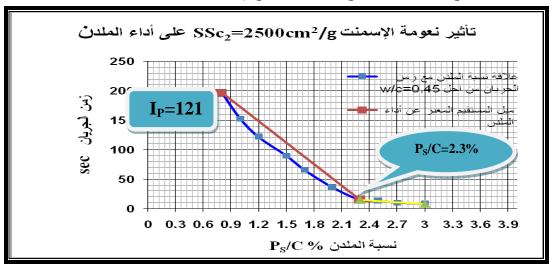
يبين الجدول (3-26) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

./20/ ¿	للخلطة البيتونية رقم	للهبوط و زمن الجريان	ير نسبة الملدن علم	(3-26) تأثير تغ	الجدول
---------	----------------------	----------------------	--------------------	-----------------	--------

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	211	0.8	1
0	191	1	2
1	166	1.2	3
2	122	1.5	4
3	96	1.8	5
4	70	2	6
6	41	2.2	7
8	22	2.4	8
9	16	2.5	9
12	12	2.8	10
15	9	3	11
19	7	3.2	12

أما الشكل (31-3) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=115$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.5\%$).

الشكل (3-31) تغير زمن الجريان للخلطة رقم /20/ بتغير نسبة الملدن.


$SSc_{2=}2500cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم $SSc_{2=}2500cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم 21/c:

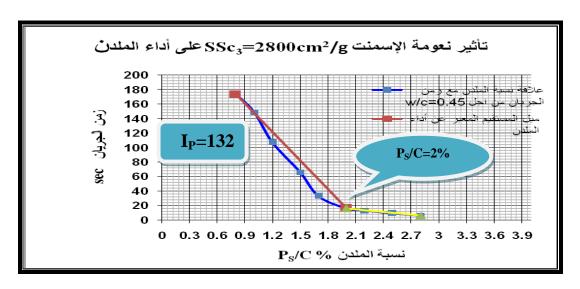
يبين الجدول (3-27) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

10-11 " "	*****				
البيتونية رقم /21/.	زمن الجريان للخلطه	على الهبوط و	غير نسبه الملدن	(3-27) تاتير ت	الجدول

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	197	0.8	1
0	153	1	2
2	122	1.2	3
3	90	1.5	4
4	66	1.7	5
7	36	2	6
9	15	2.3	7
11	13	2.5	8
15	10	2.7	9
18	8	3	10

أما الشكل (3-32) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=121$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=2.3\%$).

الشكل (3-32) تغير زمن الجريان للخلطة رقم /21/ بتغير نسبة الملدن.


$SSc_{3}=2800 cm^{2}/g$ على أداء الملدن في الخلطة البيتونية رقم $SSc_{3}=2800 cm^{2}/g$ على أداء الملدن في الخلطة البيتونية رقم 22/:

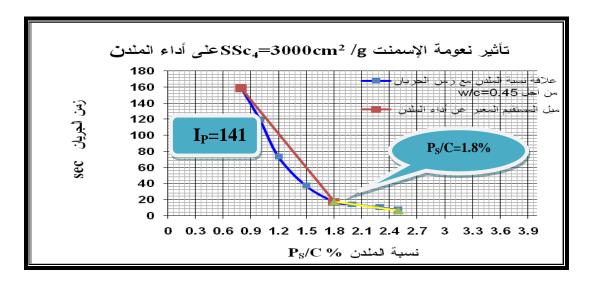
يبين الجدول (3-28) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

./22/	لطة البيتونية رقم	و زمن الجريان للذ	الملدن على الهبوط	تأثير تغير نسبة	الجدول (3-28)
-------	-------------------	-------------------	-------------------	-----------------	---------------

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	174	0.8	1
1	149	1	2
3	107	1.2	3
5	66	1.5	4
7	33	1.7	5
10	16	2	6
11	13	2.2	7
15	9	2.5	8
19	6	2.8	9

أما الشكل (33-3) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=132$) مع تحديد حد الإشباع بالملدن و البالغ ($I_P=132$).

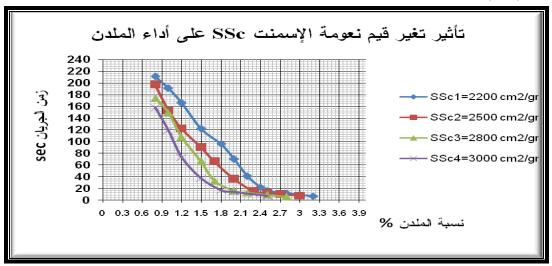
الشكل (3-33) تغير زمن الجريان للخلطة رقم /22/ بتغير نسبة الملدن.


$SSc_{4=}3000 cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم $SSc_{4=}3000 cm^2/g$ على أداء الملدن في الخلطة البيتونية رقم 23/c:

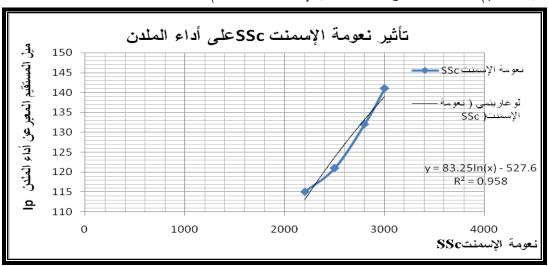
يبين الجدول (3-29) أدناه تغير قيم هبوط الخلطة البيتونية الطرية و زمن الجريان بحسب نسب الملدن المضافة في الخلطة.

البيتونية وقد /23/	زمن الجريان للخلطة	على العبوط ه	تغد نسبة المادن	29-3 تأثير	الحده أن (ا
البيتونية ريم (25).	رس الجريان للعلطة	على الهبوت و	تعير نسبه انسدن	د وعامورا	الجدول (ا

slump (cm)	time (sec)	نسبة الملدن(%)	عدد العينات
0	158	0.8	1
2	119	1	2
5	73	1.2	3
7	37	1.5	4
9	17	1.8	5
11	14	2	6
16	10	2.3	7
19	7	2.5	8


أما الشكل (3-34) فيوضح منحني الإشباع لهذه الخلطة و الذي حددنا عليه ميل الجزء الأيسر المحسوب و قدره ($I_P=141$) مع تحديد حد الإشباع بالملدن و البالغ ($P_S/C=1.8\%$).

الشكل (3-34) تغير زمن الجريان للخلطة رقم /23/ بتغير نسبة الملدن.


5-6-3-تحليل نتائج تأثير تغير نعومة الإسمنت SSc على أداء الملدن في الخلطة البيتونية:

تم جمع نتائج اختبارات الخلطة الطرية المتمثلة بقيم زمن الجريان الموافق لنسبة الملدن المتغيرة و المعبر عنها بمنحنيات الإشباع السابقة لكل خلطة بيتونية يختلف فيها قيم معامل نعومة الإسمنت المستخدم لهراسة تأثير تغير قيم معامل نعومة الإسمنت على أداء الملدن فيها، إذ لا يختلف الشكل العام لمخطط السلوك الريولوجي لجميع الخلطات البيتونية السابقة كما هو واضح في الشكل (3-35) أدناه ، فقط تختلف قيمة ميل المستقيم Ip التي تم تعريفها سابقاً. هذا المعيار الذي يحكم السلوك الريولوجي للخلطة الطرية بطريقة رياضية.

الشكل(3-35) مقارنة تأثير تغير قيم نعومة الإسمنت على أداء الملدن في الخلطة البيتونية.

و بجمع هذه النتائج عند حساب ميل كل منحني إشباع بجزئه الأول على حدا تمكنا من رسم المنحي الموضح بالشكل (36-3) أدناه الذي يمثل تغير أداء الملدن (بميل المستقيم الخلطة البيتونية الطرية بدلالة قيم معاملات النعومة الخاصة بالإسمنت المستخدم.

الشكل (36-36) تأثير نعومة الإسمنت SSc على أداء الملدن.

يدل المنحني الذي يعبر عن أداء الملدن بدلالة نعومة الإسمنت المستخدم على علاقة نصف لوغارتمية وفق المعادلة التنبؤئية التالية:

IP = 83.25*ln (SSc) - 527.6

حيث:

IP: قيمة ميل المستقيم المعبر عن أداء الملدن في الخلطة البيتونية.

SSc: معامل نعومة الإسمنت المستخدم التي تتراوح في المجال:

 $.(2200 cm^2/g < SSc < 3000 cm^2/g)$

بلغت قيمة معامل الارتباط الخاص بالمعادلة السابقة القيمة $(r^2=0.958)$ و هي قيمة قريبة من الواحد مما يعنى أن المعادلة ملائمة لمنحنى البيانات بشكل جيد.

تصلح المعادلة التنبؤية السابقة لتقييم أداءالملدن عند قيم معامل نعومة الإسمنت الاصطلاحية التي تتراوح في المجال (2000-4000cm²/gr).

ظهر المنحني تحسن أداء الملدن كلما ازدادت قيمة نعومة الإسمنت المستخدم في الخلطة البيتونية. من الملاحظ تغير قيمة ميل المستقيم المعبر عن أداء الملدن من القيمة $I_P=115$ لأقل قيمة لمعامل انتظام الحصويات $SSc=2200cm^2/g$ ، إلى القيمة $I_P=141$ لأكبر قيمة لمعامل نعومة الإسمنت و قدرها: $SSc=3000cm^2/g$.

يتحسن أداء الملدن كلما ازدادت نعومة الإسمنت و ذلك نتيجة الزيادة في معدل التأثير المتبادل بين الملدن و حبيبات الإسمنت حيث يوفر ازدياد النعومة مساحة أكبر لالتقاء الملدن مع وزن محدد من حبيبات الإسمنت ذات المقاس الأصغر من 90 ميكرون، من هنا يمكن الاستنتاج بأن تأخير تفاعل إماهة كمية من حبيبات الإسمنت الناعمة سيكون له أثراً إيجابياً في رفع قابلية التشغيل للخلطة الطرية و الاستفادة القصوى من الماء قبل تفاعلات الإماهة الخاصة بالإسمنت و هو ما يفسر تحسن أداء الملدن في هذه الحالة.

7-3-الاستنتاجات: Conclusion

1-تبين من خلال النتائج أن أداء الملدن يتأثر بالمكونات الناعمة للخلطة البيتونية (إسمنت -رمل ناعم - ماء-إضافات أخرى) ومكوناتها الخشنة(حصويات متوسطة و خشنة).

2-أظهرت جميع المخططات التي حصلنا عليها لزمن الجريان المقاس بدلالة نسبة الملدن أشكالاً متشابهة لهذه المنحنيات و التي اقترحنا تسميتها بالسلوك الريولوجي للخلطة ، إذ يظهر على هذه المنحنيات مساران متمايزان: الأول ذو ميل كبير نسبياً ، و الآخر ذو ميل أقل يفصل بينهما نقطة شديدة الأهمية تمثل حد إشباع الخلطة الطرية بالملدن و هي القيمة التي يجب أن لا تتجاوزها بكل الأحوال جرعة الملدن المضافة.

3-يظهر من خلال النتائج أن المعامل الذي يؤثر على أداء الملدن بالشكل الأكبر هو درجة نعومة الإسمنت ssc، إذ تدل منحنيات الإشباع الخاصة بدراسة تغير زمن الجريان بدلالة نسبة الملدن على تأثير واضح لهذا البارمتر مقارنة مع باقي المنحنيات. يليه بالتأثير معامل نظافة الرمل Es. مع الإشارة إلى تقارب تأثير كلاً من معامل نعومة الرمل mf و معامل انتظام الحصويات الخشنة Cu، انتهاءً بتأثير القطر الأعظمي للحصويات الخشنة.

4-تسمح المعادلات التنبؤية التي حصلنا عليها بتحديد القيم الأكثر ملاءمة للبارمترات المدروسة في الخلطة البيتونية للحصول على أفضل أداء للملدن. فعلى سبيل المثال: يمكن من خلال المعادلة التنبؤية استنتاج أفضل قيمة لمعادل نعومة الرمل المستخدم التي تحقق الأداء الأفضل للملدن و هي دائماً أقصى قيمة تسمح بها المواصفة.

5-تم في هذا البحث اقتراح منهجية تبدو منطقية لتقييم أداء الملدن في الخلطة اليتونية الطرية ، تعتمد هذه المنهجية على حساب ميل الجزء الأيسر من منحني السلوك الريولوجي و اعتبار قيمة هذا الميل IP معياراً لتقييم أداء الملدن في الخلطة. و كمثال على استخدام هذه القيمة في التقييم:

يعتبر الملدن الذي يحقق ميلاً في الجزء الأيسر من منحني الإشباع قدره IP=141: أفضل أداءاً من الملدن الذي يحقق القيمة: IP=104.

6-ستسمح هذه النتائج و المعادلات التنبؤية بتحديد قيم الملدن الأكثر ملاءمة من حيث التأثير والوفر الاقتصادي، و هو ما سيقود في النهاية إلى تقديم تصاميم للخلطات البيتونية المطلوبة سينتج عنها بيتون متجانس مقاوم ذا ديمومة عالية و بكلفة اقتصادية مدروسة.

Sudjested Recommendation

8-3-التوصيات المقترجة:

1-تعطي المنهجية المتبعة لتقييم أداء الملدن نتائج مشجعة لذلك نرى تطبيق هذه المنهجية على أنواع و أجيال مختلفة من الملدنات لاعتمادها لاحقاً.

2-أجري في هذا البحث دراسة تأثير عدد من البارمترات على أداء الملدن.و لاعتماد هذه المنهجية في التقييم نقترح أن تتوسع البارمترات المدروسة لاحقاً بحيث تشمل عيار الإسمنت في الخلطة، شكل الحصويات، الإضافات الصلبة المستخدمة، طريقة الخلط، نقل البيتون و غيره من البارمترات المدروسة. 3- لا بد من توثيق أعمال المجابل المركزية في سوريا بشكل دقيق، إذ سيسمح ذلك بالحصول على قاعدة بيانات يمكن الاستفادة منها لاحقاً في حصر المخاطر التي قد تتسبب بها التصاميم الخاطئة للخلطات البيتونية و هو ماسيسمح بتفادي هذه الأخطاء لاحقاً خصوصاً عندما يطرح متخذو القرار أسئلة عن حلول هذه المشاكل و إمكانية بناء منهجية لإدارة المجابل بالشكل الأمثل.

4-يمكن الاستفادة من قواعد البيانات في مخابر الجامعات و المراكز البحثية و المجابل المركزية للتحقق من صحة و موثوقية المنهجية المقترحة في تقييم الأداء لها.

5-ستسمح النماذج المقترحة لتقييم أداء الملدن في الخلطة البيتونية الطرية بتقديم تصاميم اقتصادية تحقق وفراً دون إهمال الجانب الفني، و هنا لابد من خلق مجموعات عمل تُعنى بالدراسة الإحصائية و تهتم بمؤشرات الكلفة و ذلك لاستخدامها في إجراء عملية التعديل للتكاليف قبل التصميم و هو ما يعتبر خطوة أساسية ضمن معظم أبحاث الكلفة تسمح بتحديد الفروق الناجمة عن التضخم و زيادة الأسعار.

6-قد يترافق تغير أداء الملدن مع بارمترات الخلطة البيتونية بتغير بعض خصائص البيتون بعد التصلب و هو ما قد يتمثل بقيمة إحدى البارمترات المدروسة التي تعطي أفضل أداء للملدن مع إمكانية تسجيل انخفاض في الأداء الميكانيكي (مقاومة على الضغط و على الشد و). لذلك نقترح استكمال هذه الدراسة من خلال متابعة خصائص البيتون بعد التصلب و تطور هذه المقاومة مع تغير قيم البارمترات المدروسة.

7-بعد أن أظهرت الدراسة المنجزة التأثير الهام لعدد من البارمترات على أداء الملدن كنظافة الرمل و نعومته و تجانس الحصويات. تظهر أهمية العناية من جديد بالإحضارات و بشكل أكثر أهمية. من هنا تأتي أهمية تزويد المقالع بالمعدات و التجهيزات اللازمة الخاصة بمعالجة الرمل من حيث النظافة و النعومة و فرز الحصويات لضمان عدم تغيير معاملاتها كالتدرج و معامل الانتظام.

8-عدم الاكتفاء بالمعلومات الواردة في النشرات المرفقة مع الملدنات، و الاعتماد على قيم الاختبارات الأولية.

الملحق1: Appendix1

التجارب المجراة على المواد الحصوية و الإسمنت

1-4-تجربة التحليل الحبي الميكانيكي بواسطة المناخل (بالطريقة الجافة):

Sieve Analysis of Coarse Aggregates AASHTO T27-78 Sieve Analysis of Coarse Aggregates ASTM C 136

* الغاية من التجربة:

تحديد أبعاد المواد الحصوية بنخل كمية جافة منها على سلسلة من المناخل النظامية موضحة بالشكل (4-1) و تعيين النسبة المئوية لكل صنف من أصنافها بهدف تصميم الخلطة الحصوية المثالية الأكثر اكتنازاً لاستخدامها في صناعة البيتون.

الشكل (1-4) سلسلة المناخل النظامية

*الدراسة النظرية:

عملياً توجد المواد الحصوية (طبيعية أو مكسرة) بشكل خليط بأبعاد حبات مختلفة و تتطلب الأعمال الهندسية تصنيف هذه المواد بمجموعات ذات أبعاد لحباتها تقع في مجالات محددة . يعتمد مبدأ هذه التجربة على نخل المواد الحصوية على سلسلة من المناخل النظامية و المنخل عبارة عن وعاء معدني ذي ثقوب دائرية المقطع أو ذي أسلاك بفتحات مربعة و تكون الفتحة هي المسافة الصافية بين الأسلاك و ليست ما بين محاورها و إن فتحات هذه المناخل تتبع لنظام البلد الصانع لها و تستعيض بعض الأنظمة العالمية عن تسمية المناخل بأبعاد فتحاتها و ذلك بإعطائها رقماً معادلاً لها و هذا الرقم المعادل بدل على فتحة المنخل.

*الأدوات والأجهزة المستخدمة:

ميزان بدقة عالية،مناخل نظامية وفق أحد الأنظمة العالمية، أدوات متممة (صواني، مغارف، فراشي بلاستيكية) تساعد في إجراء التجربة .

*مراحل إجراء التجربة:

1-تحضير العينة: بعد إجراء الفحص العيني على المواد المراد اختبارها تخلط جيداً لتأمين التجانس الجيد بين حباتها و من ثم تؤخذ عينة ممثلة لهذه المواد.

2-يؤخذ وزن معين (W) من العينة الممثلة حيث يتعلق بالقطر الأعظمي لحبات المواد المراد اختبارها. و يبين الجدول التالي كتلة العينة المراد اختبارها بحسب مواصفات (AASHTO) .

(AASH	فتحات المناخل بحسب مواصفات (ITO	الجدول (4-1) كتلة العينة المراد اختبارها وفق
	كتلة العينة الدنيا (Kg)	فتحة المنخل (mm)

كتلة العينة الدنيا (Kg)	فتحة المنخل (mm)
35	90
30	75
25	63
20	50
15	37.5
10	25
5	19
2	12.5
1	9.5
0.5	4.75
0.2	وما دون2.36

أو بحسب ASTM تم وزن عينة من المواد الحصوية الجافة تتوافق مع القطر الأعظمي للحصويات المستخدمة وتحقق العلاقة:

200Dmax<M<600Dmax

حيث M كتلة العينة بالغرام و Dmax القطر الأعظمي للحصويات المختبرة بالميليمتر

3-نختار سلسلة من المناخل النظامية و ترتب بشكل تصاعدي بدءاً من الأسفل و إلى الأعلى بحيث نضع القعر من الأسفل و يكون المنخل ذي الفتحة الأكبر من الأعلى و بعدها يوضع الغطاء لمنع تتاثر الحبات أثناء عملية الرج.

4-توضع العينة المعروفة الوزن في المنخل العلوي ثم تهز السلسلة يدوياً أو آلياً بواسطة هزاز ميكانيكي وتعتمد مدة الرج على نوعية المواد الحصوية و نعومتها و درجة نظافتها ووزنها الأولي و يجب ألا تقل عن (5min) أو على الأقل التأكد من مرور كافة الحبات من الفتحات المناسبة لها و نتيجة للهز تتوزع المواد الحصوية بشكل كيفي على المناخل.

5-يعين الوزن المتبقي أو المحجوز على كل منخل وبدقة ((W_i)) و ليكن ((W_i)) الوزن المتبقي على المنخل ذي الفتحة ((i)).

0-يتم التأكد من مجموع الأوزان المتبقية على المناخل (ΣW_i) يساوي الوزن الأولي للعينة (W_i). و غالباً ما يلاحظ وجود اختلاف ما بين (ΣW_i) نتيجة تجزئة الوزن بالإضافة إلى أن بعض الحبات يبقى عالقاً في إحدى فتحات المناخل و لا يحتسب من الوزن لذلك نلجأ إلى إجراء التصحيح و الغاية من التصحيح هي توزيع الخطأ المرتكب في الأوزان (ΣW_i) على المناخل بنفس نسبة الوزن المتبقي على هذا المنخل .

7-يتم إجراء التصحيح وفق الخطوات التالية:

 W_{i} على المنخل W_{i} هو W_{i} كما المراق الأولى العينة المختبرة W_{i} و إن الوزن المتبقى على المنخل W_{i} هو W_{i} كما أشرنا سابقاً.

7-2-يعين الفرق مابين الوزن الأصلي للعينة المختبرة ومجموع الأوزان المتبقية على المناخل بحسب العلاقة:

$$|\Delta| = \sum W_i - W$$

7-3-يعين الخطأ النسبي بالعلاقة:

 ε %=(± Δ /W)

إن إشارة (±) تدل على أن المقدار (Δ) يكون سالباً أو موجباً وبالتالي يكون التصحيح المتوجب على المنخل (i) هو (C_i %=8% $*W_i$) ويكون سالباً أو موجباً بحسب إشارة (Δ) و معاكساً لها فإذا كان (Δ) موجباً يكون التصحيح سالباً و العكس بالعكس و إن مجموع التصحيحات يساوي إلى (Δ) أي: Δ 1=1.

8-بعد تعيين التصحيح المتوجب على كل منخل من المناخل يعين الوزن المتبقي المصحح على كل منخل و بالتالي يكون الوزن المتبقي المصحح $(W_{i'})$ على المنخل (i) هو:

 $W_{i'}\!\!=\!\!W_i\!\!\pm\!C_i\!\!=W_i\!\!\pm\!\!\epsilon^*\;W_i\!\!=W_i^*\!(1\!\!\pm\!\!\epsilon)$

و بعد تعيين الأوزان المصححة على المناخل المعتمدة يجب التأكد من أن مجموع الأوزان المصححة يساوي للوزن الأصلي للعينة المختبرة أي $(\Sigma W_i = W)$ و يتم تعيين النسبة المئوية المتبقية على المنخل (i) بالعلاقة:

$$R_i\% = (W_i/W)*100$$

وبعد معرفة النسبة المئوية المتبقية على كل منخل من المناخل يتم تعيين النسبة المئوية التكاملية المتبقية على كل منخل والتي تكون على المنخل (i) هي (H_i) والتي تعطى بالعلاقة : $H_i\%=\Sigma R_i\%$

ونقصد بـ (ΣR_i) مجموعة المناخل التي تعلو المنخل (i) بما فيها المنخل (i) أي على المنخل الأول من الأعلى يكون $(H_1=R_1)$ و على المنخل (i) يكون $(H_1=R_1)$ و على المنخل (i) يكون $H_i=R_1+R_2+....R_i$

وبعدها يتم تعيين النسبة المئوية المارة على كل منخل والتي تكون على المنخل (i) هي (P_i) والتي تعطى بالعلاقة : H_i - 100 - H_i

و بهذه الخطوات يكون قد تم حساب المنحني الحبي .

9-بعد حساب المنحني الحبي يتم تمثيل النتائج تخطيطياً أو بيانياً بدلاً من جدولتها لكي يتم مقارنة عدة عينات من المواد الحصوية مع بعضها البعض. بشكل عام تمثل نتائج التحليل الحبي على مستو نصف لوغاريتمي بحيث تمثل على المحور الأفقي فتحة المناخل بمقياس لوغاريتمي و تمثل النسبة المئوية المارة على المحور الشاقولي بمقياس عادي .

4-2-تجربة لوس انجلوس لتعيين الفاقد بالاهتراء: 77-796 AASHTO

الغاية من التجربة:

تعيين الفاقد بالاهتراء لعينة المواد الحصوية التي تستعمل في أعمال البيتون أو الطرق وبالتالي معرفة مدى مقاومة عينات البحص للتآكل بالانسحاق، أي حساب عامل التآكل أو الاهتراء للبحص.

مبدأ التجرية والدراسة النظرية:

تجرى هذه التجربة في جميع الأعمال الهندسية (الطرق والسكك الحديدية ومهابط المطارات) حيث أنه من المعلوم أن العنصر الأساسي في أساس هذه المنشآت المذكورة هو المواد الحصوية (حجارة و بحص و رمل) و كلما كانت هذه العناصر ذات مقاومة عالية كلما كان المنشأ أقوى و عمره أطول.و كلما كانت غير مقاومة و هشة أدى ذلك إلى تفتت في طبقات المنشآت و هذا يسبب تخريب في المنشأة ككل.

يعتمد مبدأ هذه التجربة على وضع كمية من المواد الحصوية ذات تركيب حبي معين في وعاء معدني إسطواني دوار يضاف إلى عينة المواد الحصوية عدد من الكرات الفولاذية بحجم و بوزن معين لتسريع عملية الاهتراء، تعتمد هذه التجربة في معظم الأنظمة العالمية، و تختلف شروط التجربة من نظام إلى آخر بحسب التدرج الحبي، عدد و وزن الكرات الفولاذية المضافة، عدد الدورات، مواصفات الجهاز المستعمل، القطر الأعظمي لحبات العينة المستخدمة.....

الأدوات والأجهزة المستخدمة:

- جهاز لوس انجلوس الموضح بالشكل (2-16) و يتألف من وعاء معدني ذي محور أفقي قطره حوالي (80Cm) و طوله (50Cm) يدور بسرعة دوران ثابتة بمعدل (30-35Rpm) دورة في الدقيقة. وهو مزود بعداد لتسجيل عدد الدورات حيث يتوقف أوتوماتيكياً بعد الانتهاء من العدد المحدد للدورات.

كما يلحق بالجهاز كرات فولاذية (موضحة بالشكل) بقطر حوالي (48mm) و بوزن حوالي (420g).

-ميزان استطاعته (15Kg) وبدقة (1g) .

-منخل نظامي (No.12) ذو الفتحة (1.7mm) أو ما يعادله في الأنظمة الأخرى .

-صينية معدنية ملحقة مع جهاز لوس انجلوس.

-أدوات متممة و مساعدة لإجراء التجربة.

مراحل إجراء التجربة:

المتبقى على هذا المنخل.

تحضير العينة:

تؤخذ عينة جافة مختلفة من المواد الحصوية المراد اختبارها بوزن (5Kg) و يضاف إليها 12 كرة فولاذية بوزن (420g) لكل منها. يدار الوعاء الاسطواني (500) دورة بسرعة تتراوح (Rpm) -35 (30-35). بعد الانتهاء من عملية الدوران تنخل المواد الحصوية على المنخل (No.12) أو ما يعادله ويعين الوزن

يعين عامل لوس انجلوس أو نسبة الفاقد بالاهتراء بالعلاقة:

$$L.A\% = \frac{W_0 - W_f}{W_0} \times 100$$

حيث:

(g) الوزن الأصلي للعينة: W_0

(g) No.12 الوزن المتبقي على المنخل \mathbf{W}_{f}

و تعد المادة المختبرة مقبولة في أعمال البيتون الإسمنتي و البيتوميني عندما يكون عامل لوس انجلوس أقل من 30%.

و في أعمال طبقات ما تحت الأساس أو الأساس يقبل عامل لوس انجلوس مادون %45.

تعد المواد الحصوية قاسية كلما كان عامل لوس انجلوس صغيراً.

ملاحظة: تتص المواصفات السورية على ما يلى:

يجب أن لا يزيد عامل لوس انجلوس للحصويات المستعملة في البيتون عن 30% عندما تكون المقاومة على الضغط أكبر من 200kg/cm².

40% عندما تكون المقاومة على الضغط أصغر من

يكون عامل لوس انجلوس لايزيد عن

..200kg/cm²

عدد الكرات الفولانية و وزن العينة حسب النظام

يبين الجدول التالى التراكيب الحبية و

. (AASHTOT96-77)

التدرجات الحبية ، الوزن بـ (gr)			المنخل (mm)	فتحة	
D	C	В	A	محجوز على	مار من
			25±1250	25	37.5
			25±1250	19	25
		10±2500	10±1250	12.5	19
		10±2500	10±1250	9.5	12.5
	10±2500			6.3	9.5
	10±2500			4.75	6.3
10±5000				2.36	4.75
10±5000	10±5000	10±5000	10±5000	وزن العينة الكلي(gr)	
6	8	11	12	عدد الكرات الفولاذية	
15±2500	20±3330	25±4384	25±5000	وزن الكرات الفولاذية(gr)	
1±500	1±500	1±500	1±500	الدورات بمعدل 35 دورة/ دقيقة	

جدول (2-4) التراكيب الحبية و عدد الكرات الفولانية و وزن العينة لتجربة لوس انجلوس حسب النظام (77-AASHTOT96) .

3-4-تجربة المعادل (المكافئ) الرملي Sand Equivalent test:

* الغاية من التجربة:

تعيين نسبة الرمل النظيف الموجود في عينة رملية تحوي على الشوائب والمواد الغضارية وذلك لتحديد صلاحية الرمل للأعمال الهندسية (بيتون إسمنتي ببيتون بيتوميني ،طبقات رصف).

*الدراسة النظرية:

عرفت هذه التجربة لأول مرة في مدينة كاليفورنيا في الولايات المتحدة الأمريكية و ذلك لتحديد أهمية المواد الناعمة في المواد الرملية و بالتالي فهي تعد من التجارب المهمة في مجال الطرق، إذ يمكن أن تحل محل تجربة حدود أتربرغ التي تأخذ وقتاً طويلاً من الزمن لإنجازها و من ثم تطورت و أصبحت تعد من المعايير الأساسية في تقييم الرمل المستخدم في أعمال البيتون الإسمنتي.

يعتمد مبدأ التجربة على فصل الحبيبات الناعمة الغضارية الملتصقة على حبات الرمل و ذلك باستعمال محلول مشتت محضر من كلور الكالسيوم و الغليسيرين و الفورم الدهيد (يؤخذ gr من كلور الكالسيوم الكالسيوم اللامائي مع 480gr من الغليسيرين و 12gr من الفورم الدهيد و 40L ماء) و بعد انفصال الحبيبات الناعمة فإنها تطفو على سطح السائل فيتم تعيين نسبة الرمل الموجود في العينة المختبرة.

*الأدوات والأجهزة المستخدمة:

- أنابيب اختبار شفافة مدرجة من البلاستيك بقطر داخلي (430mm) و مزودة بخطي علام: الأول السفلي يبعد عن القاعدة (100mm)، و الثاني العلوي يبعد (380mm) .

- كمية من المحلول المشتت .
- جفنه معدنية بحجم (90Cm³) لمعايرة حجم العينة المختبرة .
- ميقاتية ، هزاز ميكانيكي يستعمل لهز أنابيب الاختبار يعمل وفق نظام معين، قمع من البلاستيك يساعد في سكب الرمل داخل أنابيب الاختبار ، أدوات متممة (ملعقة، فرشاة، صينية لتحضير العينة)، مكبس يزن (1Kg) .

* مراحل إجراء التجربة :

- تحضير العينة: يتم تحضير العينة بنخلها على المنخل (NO4) و هي في حالتها الطبيعية و بعدها تملئ الجفنة المعدنية بحجم حوالي (20g) بحيث يكون الوزن الجاف للعينة بحدود (120g).
 - تملأ الأنابيب الثلاثة بالمحلول المحضر حتى الخط السفلي .
- تسكب عينة الرمل الموجودة في الجفنة المحضرة سابقاً بالأنابيب بواسطة القمع و تترك الأنابيب مدة (10 min) لتهدأ .
- يغلق أنبوب الاختبار بواسطة سدادة مطاطية إغلاقاً محكماً و يرج أفقياً بواسطة جهاز الرج بمعدل (90) مرة ذهاباً و إياباً بشوط طوله (20Cm) و لمدة (30Sec) و يمكن أن يتم الرج يدوياً و بنفس الشروط السابقة.
 - ترفع السدادة و يدخل الأنبوب الغاسل لرش جدران المخبار بالمحلول الأمر الذي يسمح للعناصر الناعمة بالانفصال بصورة كاملة و يستمر في سكب المحلول بالمخبار حتى الخط الثاني .
- يترك المخبار ليهدأ مدة (min) و هنا يمكن تمييز ثلاث مناطق من الأعلى إلى الأسفل: سائل شفاف صاف، شوائب، رمل.
- نعين ارتفاع منطقتي الرمل والشوائب (H_1) و نعين ارتفاع منطقة الرمل (H_2) بالنظر. بعدها يعطى المعادل الرملي بالعلاقة :

$$E_{s} = (H_2/H_1)*100$$

• يمكن إدخال المكبس داخل أنبوب الاختبار حتى يقف باصطدامه بالرمل في الأسفل على ارتفاع (H^1) من القاعدة وبتعيين (H^1) ارتفاع طبقتي الرمل والشوائب في هذه الحالة يمكن تعيين المعادل الرملى كما يلى:

$$E_{s} = (H^{l}_{2}/H^{l}_{1})*100$$

تعاد المراحل السابقة بالمخبارين الأخيرين و تعين قيمة المعادل الرملي بأخذ وسطي القيم الثلاثة و لأقرب رقم صحيح، و بناء على قيمة المعادل الرملي يمكن تصنيف الرمل كما في الجدول التالي حسب مواصفات مخبر الطرق و الجسور بباريس (فرنسا).

الجدول (4-3) تصنيف الرمل حسب مواصفات مخبر الطرق و الجسور بباريس (فرنسا)

there we have	(ES)	tettos	
مجال الاستعمال	بالنظر	بواسطة المكبس	نوع الرمل
بيتون عادي	65	60	مقبول
بيتون بمقاومة عالية نسبياً	75	70	نظیف
بيتون عالي المقاومة أو بيتون خاص	80	75	نظيف جداً

*بعض الملاحظات على التجرية:

تتراوح قيمة المعادل الرملي ما بين (100-CS=(0-100)

ES=100 عندما يكون الرمل نظيفاً خالياً من الشوائب.

ES=0 عندما تكون العينة المختبرة عبارة عن شوائب و غضار. و يفضل في أعمال البيتون الرمل ذو المعادل الرملي المرتفع.

في حال انخفاض قيم المعادل الرملي عن القيم المبينة في الجدول السابق بحسب مجال استخدامه ينصح إما بغسل الرمل أو بنخله أو الاثنين معاً و في حال تعذر عمليتي الغسيل و النخل ينصح بزيادة عيار الاسمنت تجنباً لنقصان مقاومة البيتون أو تعرضه لتشققات داخلية نتيجة سلوكية بعض النواعم الموجودة في الرمل و التي تكون في بعض الحيان مواد انتفاخية.

4-4-تجربة قياس الوزن الحجمى (الظاهري والصلب)للمواد الحصوية الخشنة والناعمة:

Specific gravity of coarse aggregat Specific gravity of fine aggregates **ASTM C 127-77 AASHTO T 85-77**

ASTM C 128-73 AASHTO T 84-77

الغاية من التجربة:

ρα الصلبة ρs لكل من البحص و الرمل يهدف هذا الاختبار إلى قياس الكتل الحجمية الظاهرية المستخدمين.

التجهيزات والمواد المطلوبة:

وعاء زجاجي مدرج بحجم معلوم.

أوعية معلومة الحجم (مكاييل) 1 ليتر أو 2 ليتر أو 3 ليتر.

أوعية معدنية للحصويات (بحص + رمل)و أوعية خلط.

ميزان الكتروني بدقة 1g±.

مسطرة معدنية للتسوية.

حصويات جافة (بحص+ رمل).

مراحل العمل:

قياس الكتلة الحجمية الظاهرية pa:

يتم ذلك وفق المراحل التالية:

 $\frac{1}{1}$ ملء وعاء ذي حجم معروف $\frac{V}{V}$ (مكيال) بالمادة الجافة (بحص أو رمل) إلى أعلاه، مع مراعاة تسوية السطح باستخدام المسطرة المعدنية ودون رص العينة .

وزن العينة مع الوعاء واستنتاج وزن العينة دون الوعاء وليكن M.

. حساب الكتلة الحجمية الظاهرية $ho a = rac{M}{V}$ لكل من البحص و الرمل

تعاد العملية ثلاث مرات وتؤخذ القيمة الوسطى مع مراعاة عدم تجاوز الفرق بين قيمتين مقاستين اله 5%.

ب- قياس الكتلة الحجمية الصلبة ρs لكل من البحص و الرمل:

يتم ذلك عن طريق حساب الحجم الحقيقي للحبيبات Vs باستخدام الماء وفق المراحل التالية:

- ملء الوعاء الزجاجي المدرج بالماء حتى حجم معلوم (تدريجة محددة) من ثم وزنه لنحصل على .M1
 - أخذ وزن محدد من الحصويات الجافة (من 100 إلى 500g) وليكن M2.
 - تفريغ جزء من الماء من الوعاء الزجاجي (حوالي الثلث تقريبا") ثم وضع الحصويات التي تم وزنها مع الإتمام بالماء حتى التدريجة السابقة و ليكن الوزن الكلي في هذه المرحلة M3
 - حساب الكتلة الحجمية الصلبة من العلاقة:

$$\rho s = \frac{M2}{M1 + M2 - M3} \quad \bullet$$

ج-تعاد العملية ثلاث مرات و تؤخذ القيمة الوسطى مع مراعاة عدم تجاوز الفرق بين قيمتين مقاستين الـ 5%.

د- حساب مسامية واكتناز كل من البحص و الرمل من العلاقات:

$$C = \frac{\rho a}{\rho s}$$
 $P = 1 - C = 1 - \frac{\rho a}{\rho s}$

4-5-تجربة تحديد صنف الإسمنت:

صنف الإسمنت هي مقاومة المونة الإسمنتية النظامية على الضغط عند عمر (28) يوماً.

قمنا بتحضير عينات المونة الإسمنتية النظامية لقياس صنف الإسمنت المستخدم وفق المقادير التالية: .S=1350gr رمل S=225gr ، الإسمنت C=450gr

خطوات إجراء التجربة:

تتم عملية الخلط وفق المراحل التالية:

- وزن المواد (رمل إسمنت ماء) بدقة و بشكل منفصل.
 - وضع الرمل في الخلاط ثم الإسمنت (الخلاط متوقف)..
 - خلط المواد على الناشف .
 - تشغيل الخلاط بسرعة بطيئة مدة 15sec.
 - إضافة الماء تدريجياً اثناء عملية الخلط.
 - إيقاف الخلاط .
 - تحريك المواد يدوياً لنزع ما التصق في قعر وعاء الخلط.
- إعادة الخلاط للدوران بسرعة مدة 30sec ثمّ ببطء مدة 15sec.
- صب ثلاثة عينات نظامية من المونة في القوالب ذات الأبعاد (16*4*4cm).
 - تفك القوالب بعد 24 ساعة وتوضع في حوض حفظ العينات.
 - اختبار العينات بعد 28 يوم على الضغط البسيط.

4-6-تجربة نعومة الإسمنت:

السطح النوعي: يُقصد بالسطح النوعي نعومة الإسمنت معبراً عنها بمجموع المساحة السطحية لجسيمات الإسمنت الموجودة في غرام واحد مقدرة بالسنتمترات المربعة، وتقاس مخبرياً بتطبيق تجربة بلين وفق المراحل التالية:

مبدأ الإختبار: يعتمد مبدأ الاختبار على قياس الزمن اللازم لتسرب حجم ثابت من الهواء تحت ضغط معين و درجة حرارة معينة عبر طبقة من الاسمنت في شروط محددة وذلك بواسطة جهاز بلين. وصف جهاز بلين:

- ا. خلية النفوذية : تتألف خلية النفوذية من اسطوانة قطرها الداخلي . 12.7±0.1 و طرفها العلوي مستوي وعمودي وقابل للتجمع بإحكام مع الجزء العلوي للمانومتر .
- 7. الشبك المثقب :وهو من المعدن ذي سماكة 0.1 ± 0.1 ويحتوي من 30 إلى 40 ثقب في دائرة قطرها 1 ± 0.1
- ٣. المكبس:من الفولاذ يمكنه من الدخول الى الخلية بخلوص لا يتجاوز 0.1mm طرفه السفلي حاد و يحتوى على مجراة تسمح بمرور الهواء .

- ٤. المانومتر :وهو عبارة عن أنبوب زجاجي على شكل حرف U ذو قطر داخلي 9mm قمة أحد فرعيه مجهزة لتركيب الخلية و يحتوي هذا الفرع على ثلاثة خطوط علام أفقية يتصل هذا الفرع عن طريق صمام بالرمانة الماصة التي بواسطتها نطبق الضغط الماص.
 - ٥. سائل المانومتر: و هو عبارة عن سائل ذي لزوجة ضعيفة وكثافة منخفضة (زيت معدني).
 - 7. ساعة ميقاتية: يمكن قراءة الزمن عليها بدقة 0.5sec.

الأجهزة السابقة المرفقة بجهاز بلين موضحة بالشكل (2-3) الوارد في الفصل الثاني.

تحضير عينة الإختبار:

يوضع الشبك المثقب في قعر الخلية و يثبت فوقه قرص من ورق النشاف ثم نزن كميّ الإسمنت بدقة 0.01gr ثم نرص العينة بالدق أولاً على جوانب الخلية و تسوية سطحها، ثم يوضع قرص آخر من ورق النشاف و ترص عينة الإسمنت بواسطة المكبس حتى تصبح حلقة المكبس منطبقة على قمة الخلية مع الإنتباه إلى عدم صعود كمية من الإسمنت فوق ورق النشاف، ثم ندور المكبس ببطء لإخراجه من الخلية. إجراء الاختبار:

نأتي بالخلية ونزنها مع القرص المعدني المثقب والفلترين ثم نملاً الخلية بالزئبق ونسوي سطحها ثم نزنها مع القرص المثقب و الفلترين ثم نقوم بحساب وزن الزئبق Wa:

وزن الخلية فارغة مع القرص المعدني المثقب والفلترين – وزن الخلية و هي مملوءة مع القرص المعدني المثقب و الفلترين.

نملاً الخلية بالاسمنت (بعد أن نفرغها من الزئبق) و نزنها مع القرص المعدني المثقب و الفلترين ثم نغلق الخليق بواسطة غطائها .

نحسب وزن الاسمنت:

(وزن الخلية فارغة مع القرص المعدني المثقب والفلترين) – (وزن الخلية وهي مملوءة بالاسمنت مع القرص المعدني المثقب والفلترين).

نملأ الخلية التي كانت مملوءة با لإسمنت بالزئبق و نزنها مع القرص المعدني المثقب و الفلترين والإسمنت و الزئبق.

نحسب وزن الزئبق المضاف Wb:

(وزن الخلية و هي مملوءة بالإسمنت مع القرص المعدني المثقب والفلترين) – (وزن الخلية وهي مملوءة بالإسمنت و الزئبق مع القرص المعدني المثقب والفلترين).

نحسب حجم الاسمنت من العلاقة:

$$\gamma = \frac{\mathrm{m}}{\mathrm{v}} \to V = \frac{m}{\gamma}$$

حيث أن الكثافة (كتلة واحدة الحجم): هي نسبة كتلة المادة الى حجمها وتقدر عادة بـ gr/cm³ أو مشتقاته . وبالتالي لحساب حجم عينة الاسمنت نستعين بالزئبق و الذي استخدمناه بالأصل لحساب حجم عينة الإسمنت و قد تم اختيار الزئبق لأنه لا يتفاعل مع الاسمنت ويكون حجم الإسمنت:

و يوجد جدول يعطي كثافة الزئبق حسب درجة حرارة الجو المحيط.

نتحقق من منسوب السائل ضمن المانومتري بحيث يكون على مستوى خط العلام السفلي .

توضع الخلية على أنبوب المانومتري في مكانها مع الانتباه الى عدم تخلخل العينة و لتسهيل ذلك يوضع قليل من دهن الفازلين و بحركة دورانها خفيف يتم تركيب الخلية بشكل محكم .

يطبق ضغط امتصاص للهواء بواسطة الرمانة الماصة بحيث يرتفع منسوب السائل في المانومتري إلى مستوى خط العلام العلوي .

يغلق الصمام و تشغل الميقاتية عندما يصبح السائل على خط العلام الثاني وذلك بسبب دخول الهواء الى المانومتر عبر الإسمنت نوقف الميقاتية عندما يصل السائل الى خط العلام السفلي فنقيس الزمن الذي استغرقته .حساب السطح النوعي.

يتم حساب السطح النوعي حسب العلاقة:

$$S = K \times \frac{e}{1-e} \times \frac{\sqrt{t \times e}}{\gamma}$$

حيث: K ثابت قيمته 1544.

t: الزمن الذي استغرقه السائل للوصول الى خط العلام السفلي.

كثافة الاسمنت وتساوي 3.1.

e.مسامية عينة الإسمنت وتحسب من العلاقة:

$$m e=1-rac{Nv}{Nv}=rac{V-Vs}{V}=1-rac{Nv}{V}=1-rac{m}{v imes V}$$

المسامية : هي نسبة حجم الفراغات Vv الموجودة في المادة على الحجم الكلي V للمادة بما في ذلك حجم الفراغات.

7-4- تجربة الوزن النوعي للإسمنت: Specific Density of Cement

الوزن النوعي للإسمنت أي كثافة الإسمنت و هي وزن وحدة الحجوم لحبيبات الإسمنت، و يفيد تحديد كثافة الإسمنت في تصميم الخلطات البيتونية والتحكم في جودتها، و قد تتراوح الكثافة النوعية لمختلف أنواع الإسمنت بين 3.1 إلى 3.2، و يوجد عدة عوامل مؤثرة على الكثافة النوعية للإسمنت:

-التخزين: حيث أن التخزين لفترات طويلة يقلل من الكثافة النوعية بشكل ملحوظ.

-المركبات الكيميائية:الإسمنت الحاوي على أكسيد حديد قد يزيد الكثافة بقيمة تتراوح مابين(0.1-0.05) -نعومة الإسمريت: حبيبات الإسمنت الناعمة تكون كثافتها النوعية أكبر من حبيبات الإسمنت الخشنة

و التي لها نفس المكونات و التركيب الكيميائي والظروف.

الهدف من الاختبار:

يهدف الاختبار إلى تحديد كثافة الإسمنت و ذلك بتحديد وزن وحدة الحجوم من مادة الأسمنت باستخدام قنينة لوشاتليه للكثافة .و لكن لا تنص الموصفات على إجراء هذا الاختبار كاختبار قبول أو رفض للإسمنت، و لكن يتم تعيين الكثافة للاستفادة منها في تصميم الخلطات البيتونية أو لأي مقارنات بين أنواع الإسمنت المختلفة.

أجهزة الاختبار:

-إناء لوشاتليه للكثافة: تستخدم زجاجة قياسية مستديرة المقطع بالشكل و الأبعاد الموضحة بالشكل (2-4) الوارد في الفصل الثاني السابق.

-كيروسين خالى من الماء و النفط أو أي سائل لا يتفاعل مع الإسمنت.

-حمام مائى: لضمان تثبيت درجة الحرارة لفترة كافية.

-ميزان**.**

خطوات الاختبار:

أ-نزن عينة الإسمنت المراد اختباره بمقدار (64+0.05gr).

ب-تملأ الزجاجة بالكيروسين حتى يصل إلى نقطة بين التدريجين (0-1mm) ، يجفف السطح الداخلي للفجاجة أعلى مستوى الكيروسين إذا لزم الأمر.

ج-توضع الزجاجة المملوءة بالكيروسين في حمام مائي على أن تكون في وضع رأسي داخل الحمام المائي و تؤخذ قراءة ابتدائية لمستوى الكيروسين بالزجاجة.

د-توضع عينة الإسمنت المطلوب اختباراها داخل الزجاجة على دفعات صغيرة عند نفس درجة حرارة الكيروسين، و يراعى عند وضع الإسمنت داخل الزجاجة عدم فقد أى كمية منه أو التصاقه بالأسطح الداخلية الزجاجة أعلى منسوب الكيروسين.

ه-بعد وضع كمية الإسمنت بأكملها داخل الزجاجة ، توضع السدادة على فوهة الزجاجة ثم تحرك الزجاجة حركة دورانية في وضع مائل بحيث يتم طرد الهواء المحبوس بين حبيبات الإسمنت، و يستمر تحريك الزجاجة حتى يتوقف ظهور فقاعات هوائية من سطح الكيروسين داخل الزجاجة.

و-توضع الزجاجة في الحمام المائي ثم تؤخذ القراءة النهائية.

النتائج:

يمثل الفرق بين القراءتين النهائية و الابتدائية حجم السائل المزاح بعينة الإسمنت المستخدمة في الاختبار و على ذلك:

الحجم المزاح من السائل = القراءة النهائية - القراءة الابتدائية تحسب الكثافة النوعية للإسمنت كما يلي:

الكثافة النوعية للإسمنت (gr/cm³)=كتلة الإسمنت (gr) مقسومة على الحجم المزاح من السائل (cm³).

المراجع

- 1. MALIR Y. *Les Beton a Hautes Performance*, presse de l'ecole nationale des ponts et chausses ,paris, 1992,1593.
- 2. BARON, J., OLIVIER, J. P. Les beton, bases et donnees pour leur formulation, Eyrolles, parise, 1999, 522.
- 3. DREUX, G., FESTA J. Nouveau guide du beton et de ses constituents, Eyrolles, parise, 1998, 409.
- 4. DELARRARD, F., LACROIXR. *Utilization of High Strength/ High Performance Concrete*, presse de l'ecole nationale des ponts et chausses ,paris, 1992,1593.
- 5. BAROGHEL-BOUNY V. Caracterisation microstructurale et hydriques des pates de ciment et des betons ordinaries et a tres hautes performances, Ecole Nationale des Ponts et Chaussees, paris, 1994, 468.
- 6. István, A. *The evolution of superplasticizer technology New opportunities in concrete industry*, Sika Hungary Ltd. H-1117 Budapest, Prielle Kornélia u. 6.
- 7. Rezső, P., *Betonadalékszerek*, Építésügyi Tájékoztatási Központ Kft., Budapest, (1988).
- 8. Honert, D. *Superplasticizers Data Pool*, Sika Addiment GmbH, Leimen, (2004).
- 9. Német, F., *Öntömörödő betonok Sika ViscoCrete technológiával Diplomamun-ka*", BME Építőanyagok és Mérnökgeológia Tanszék, Szerkezetépítő Szakmérnöki Tanfo-lyam, Betontechnológiai Ágazat, Budapest, (2006).
- 10. Cook, H.K. *Proceedings of the International Symposium on Admixtures forMortar and Concrete*, Brussels, 135–6. *Congress on Polymer Concretes*. London, Section 7, Paper 10, (1967).
- 11. István, Z. Öntömörödő beton, a betontechnológia legújabb forradalma 1. Fo-galmak és vizsgálati módok, Vasbetonépítés (Concrete Structures) Journal of the Hungarian Group of fib, No. 1/2003, pp. 17-24, (2003).
- 12. British Patent 1 068 886, (1967).
- 13. Hansen, W.C. (1959). *ASTM Special Publication* No. 266, 20–2.14 Chaiken, B. (1961). *Public Roads*, **31**, 126–35.
- 14. Chaiken, B. *Public Roads*, **31**, 126–35, (1961).
- 15. Joisel, A. *Physico Chemistry of Admixtures for Cement and Concrete*, 40, (1973).
- 16. Rixom, M.R. *Proceedings of the Workshop on the Use of Chemical Admixtures in Concrete*, University of New South Wales, 153, (1975).
- 17. Gilbert, E.F. Sulphonation and Related Reactions, Wiley Interscience, New York, (1968).
- 18. Foster, D.E. ACI Journal Title 60-64, 1481-523, (1963).

- 19. Morgan, D.R. *Proceedings of the First Australian Conference on Engineering Materials*, University of New South Wales, 97–108, (1974).
- 20. Hewlett, P.C. Private communication, (1975).
- 21. Anon. Admixtures for Concrete. Concrete Society TRCS, 1, (1967).
- 22. Anon. *Heptonates as Additives for Concrete and Cement*, Croda Ltd., data sheet and Sandberg reports L337 and M13, (1974).
- 23. Bruere, G.M. Constructional Review, Australia, 37, 16–21, (1964).
- 24. Diamond, S. Journal of the American Ceramic Society, 54, 2734, (1971).
- 25. Mielenz, R.C. Proceedings of the Fifth International Symposium on the Chemistryof Cement, Tokyo, 32, (1968).
- 26. Danielson, U. *Proceedings of the International Symposium on Admixtures for Mortar and Concrete*, Brussels, 58–67, (1967).
- 27. British Patent 1 169 582, (1969).
- 28. Aignesberger, A. Cement, Lime and Gravel, 48, 188–92, (1943)
- 29. Daimon, M. and Roy, D.M. Cement and Concrete Research 9, 103–10, (1979).
- 30. Nawa, T. et al. Third International Conference of Superplasticizers and OtherAdmixtures, Canada, ACI SP-119, 405–24, (1989).
- 31. Al-Kurwi, A. et al. British Ceramics Society, 35, 339–48, (1984).
- 32. Anderson, P.J. et al. Cement and Concrete Research, 18, 980-6, (1988).
- 33. Shonaka, M. et al. Fifth Canmet/ACI Conference on Superplasticizers and Other Admixtures in Concrete, Italy, 613, (1997).
- 34. Ohta, T. et al. Fifth Canmet/ACI Conference on Superplasticizers and Other Admixtures in Concrete, Italy, 361, (1997).
- 35. Rixom, M.R. and Mailvaganam, N.P. *Chemical Admixtures for Concrete*. E. &F.N.Spon, London, UK, 21, (1986).
- 36. Ferrari, et al. Fifth Canmet/ACI Conference on Superplasticizers and Other Admixtures in Concrete, Italy, 869, (1997).
- 37. Ramachandran, V.S. Journal of the ACI, 80, 235–41, (1988).
- 38. Massazza, F. et al .CEMBUREAU Report #3, (1977).
- 39.Lea ,F.M. the Chemistry of Cement and Concrete ; Chemical Publishing , Inc.; (1971).
- 40. The Concrete Society Technical. *Guide to Chemical admixtures for concrete*. Report of Joint working party of CS&CAA. No.18, London, (1980).
- 41. Vollick, C.A. ASTM Special Publication No. 266, 19–5,(1959).
- 42. Ore, E.L. ASTM Special Publication No. 266, 86, (1959).
- 43. Johnson, C.D. et al. Proceeding TRB Symposium on Superplasticizers in Concrete, Transportation Research Record No. 720, Washington D.C, (1979).
- 44. Jeknavorian, A. et al. Fifth Canmet/ACI Conference on Superplasticizers and Other Admixtures in Concrete, Italy , 55–81,(1997).

- 45. Ghosh, R.S. and Malhotra, V.M. *Canmet Report MRP/MRL 78–189 (J)*, Canmet, Energy, Mines and Resources, Ottawa, Canada, (1978).
- 46. Burg, R.G. and Ost, B.W. PCA R& D Bulletin RD 104T, Skokie, Illinois, (1994).
- 47. Perenchio, W.F. *et al* . *Proceedings International Symposium on Superplasticizersin Concrete*, Canmet, Canada Energy, Mines and Resources, Ottawa, Canada 1, 325–46,(1978).
- 48. Mielenz, R.C. and Sprouse, J.H. *Proceedings International Symposium on Superplasticizers in Concrete*, Canmet, Canada Energy, Mines and Resources, Ottawa, Canada, **1**, 403–24, (1978).
- 49. Roberts, L.R. and Scheinder, P. ACI SP-68, 189–213, (1982).
- 50. Malhotra, V.M. Cement Concrete and Aggregates, ASTM, 4, 3–23, (1982).
- 51. Aitcin. p. c. *The use of superplasticizers in high performance concrete*. High performance concrete: from material to structure, (1992).
- 52. .Aitcin. p. c. *High performance concrete*. E&FN spon.London,ISBS0-419-19270-0,591 p (1998).
- 53. DREUX, G.; FESTA J. Nouveau guide du béton et de ses constituants, Eyrolles, Paris, 1998, 409.
- 54. Collepardi, M. Journal of Cement, Concrete and Composites, 20(2/3), 12–103, (1998).
- 55. Rixom, R, Chemical Admixtures For Concrete, p12-76, (1999).

المراجع باللغة العربية

- 56 خيربك، علي. أثر الاستخدام الأمثل للملانات على مواصفات المونة الاسمنتية في الحالة الطرية . و الصلبة، مجلة جامعة تشرين، المجلد 2008,30.
- 57. خوري، مروان. التلاؤم بين الروابط الاسمنتية والإضافات الكيميائية، مجلة جامعة البعث، المجلد 2004.
 - 58. حنا، بسام. مواد البناء و اختيبارها، منشورات جامعة البعث لعام 1992.
 - 59. حنا، بسام. الدليل العملي لمواد البناء، منشورات جامعة البعث لعام 2000-1999.
- 60.الإسمنت، التركيب، المواصفات. هيئة المواصفات و المقاييس العربية السورية، S.N.S1887 ، دمشق، 1997 ، 5. دمشق،
 - طرائق اختبار الإسمنت، طريقة تحديد النعومة. هيئة المواصفات و المقاييس العربية السورية، S.N.S1673 دمشق، 1996.
 - صنف الإسمنت. هيئة المواصفات و المقاييس العربية السورية، S.N.S1674 ، دمشق، 1996.
 - 61 هيئة المواصفات و المقاييس الأمريكية ASTM
 - 62 الكود العربي السوري، نقابة المهندسين، دمشق،2004.
 - 63 هيئة اختبارات المواد و الطرق الأمريكية AASHTO.

جدول الرموز والمختصرات

الوحدة	تعريف الرمز	الرمز
Kg/m ³	عيار الإسمنت المستخدم	С
Kg/m³	وزن البحص الخشن المستخدم	G1
Kg/m³	وزن البحص الناعم المستخدم	G2
Kg/m ³	وزن الرمل الخشن المستخدم	S1
Kg/m³	وزن الرمل الخشن المستخدم	S2
Kg/m ³	وزن الماء المستخدم	W
L/m ³	حجم الفراغات	$\mathbf{v}_{\mathbf{v}}$
9/0	نسبة الماء إلى الإسمنت	w/c
Kg/m³	الوزن النوعي للإسمنت	Pc
Kg/m ³	الوزن النوعي للبحص	ρG
Kg/m ³	الوزن النوعي للرمل	ρS
Kg/m³	الوزن النوعي للماء	Pw
-	معامل يتعلق بنوع وحجم وشكل الحصويات	G
Kg/m ²	المقاومة التصميمية للبيتون	R _{Cm}
Kg/cm ²	صنف الأسمنت	Бс
-	معامل نعومة الرمل	Mf
9/0	المكافئ الرملي	Es
mm	القطر الأعظمي للحصويات	Dmax
-	معامل انتظام الحصويات	Cu
Cm ² /gr	معامل نعومة الإسمنت	Sc
sec	زمن الجريان المبدئي	T1
sec	زمن الجريان الموافق لدرجة الإشباع	Ts
9/0	نسبة الملدن المبدئية	P1/c
9/0	نسبة الملدن الموافق لدرجة الإشباع	Ps/c
9/0	نسبة الملدن	p/c
-	ميل المستقيم المعير عن أداء الملدن	Ip
%	عامل لوس انجلوس	LA
-	فورم الدهيد نقتالين سولفونيت	SNF
_	فورم الدهيد ميلامين سولفونيت	SMF
-	البولي اكريليت	PCE
-	مخفضات الماء عالية الأداء	HRWR

الملخص

يُشكّل البيتون مادة البناء الأولى في العصر الحديث. و يتركب من خليط مكتنز نسبياً و بنسب محددة و محسوبة مسبقاً من الإسمنت، المواد الحصوية، الماء و الإضافات الصلبة و السائلة.

تُعتبر خصائص البيتون في الحالة الطرية من أهم ما يحكم نجاحه أو فشله عند صبه، و ما يترتب على ذلك من خصائص في الحالة الصلبة. نشير هنا إلى خصائص القوام و التي ستؤثر على قابلية تشغيله و إمكانية صبه بأقل جهد ممكن.

تشير جميع القوانين الخاصة بتصميم الخلطات البيتونية إلى تناسب طردي بين ريولوجيا البيتون و نسبة الماء إلى الإسمنت W/C ، تلك النسبة التي تؤدي دوراً كبيراً في بنية البيتون المتصلب، و تؤثر في أدائه و عمره التصميمي. و هو ما يفرض على المصمم البحث عن الحد الأدنى من الماء المضاف أثناء الخلط لتحقيق مقاومات ميكانيكية مرتفعة، و اكتناز عال سيقود حتماً إلى الديمومة المرجوة.

دفعت الحاجة لإنتاج بيتون بقابلية تشغيل مرتفعة، و مقاومة ميكانيكية عالية إلى البحث عن استخدام إضافات ملدنة تسمح بتعويض النقص في قابلية التشغيل التي قد يتسبب بها الحد من كمية الماء المضافة. عندها ظهرت في عالم المواد إضافات كيميائية تهدف إلى تعديل سلوك البيتون في حالته الطرية، و ترفع بشكل ملفت قابلية تشغيله. نتحدث هنا عن الملدنات العادية و الملدنات عالية الأداء من الأجيال المختلفة.

نحصل على التأثير الأمثل للملان في خلطات البيتون الطري عند تأمين الظروف الأنسب لعمله، لذلك ركز البحث على تحديد تأثير بعض معاملات الخلطة البيتونية على أداء هذه الملدنات في البيتون الطري. حيث تُقيم جودة أداء الملدن في الخلطة البيتونية الطرية بقدر ما يحسن من قابلية تشغيلها. و الذي تم التعبير عنها في هذا البحث بقيمة الهبوط في مخروط أبرامز، أو قيمة زمن الجريان في جهاز المانيابيليمتر. تتمثل البارامترات المدروسة بمعامل نعومة الرمل المستخدم، و مكافئه الرملي و معامل انتظام الحصويات الخشنة، و المقاس الاعتباري للقطر الأعظمي للحصويات الخشنة و درجة نعومة الإسمنت المستخدم. إذ تم في البحث دراسة تأثير كل منها على أداء الملدن المستخدم في الخلطة الطرية. تمكنا في نهاية البحث من تحديد تأثير هذه المعاملات على أداء الملدن بشكل دقيق يسمح من خلال المعادلات التنبؤية التي تم استنتاجها بتوفير الشروط الأكثر ملاءمة للحصول على أفضل أداء لها في البيتون، و هو ما سيقود حتماً إلى توفير في هذه المادة غالية الثمن، و إنتاج بيتون عالي التجانس و البيتون، و هو ما سينعكس إيجاباً على ديمومة المنشآت البيتونية.

Abstract

The concrete Is the first construction material in the modern era. And is composed of a mixture of relatively compacting specific rates and calculated in advance of cement, aggregate, water, additives, liquid and solid.

.The properties of fresh concrete in the case of the most important what governs success or failure when casting, and the consequence of the properties in the hardend state, We refer to the properties of consistency that will affect the workability and the possibility of casting the concrete in less effort.

All concrete mix design relations refer to direct proportion between rheology concrete and water to cement ratio W/C, the ratio, which play a major role in the hardened concrete structure, and affects the performance and designed old. This is what forces the designer find the minimum of added water during mixing to achieve highly compressive strength, and high compactness will inevitably lead to the desired durability.

The need to produce concrete with large workability, and highly compressive strength prompted to use plasticizered additions that allows to compensate the lack of workability, which may be caused by the reducing of the amount of added water. Then the chemical additives appeared in the world of material intended to modify the behavior of concrete in its fresh state, and raise workability. Here talking about the normal plasticizer and high-performance plasticizers from different generations.

We get the optimal effect of plasticizer in fresh concrete mixes when securing the most appropriate conditions for his work, so the research focused on determining the effect of some concrete formulation parameters on the performance of these plasticizers in fresh concrete. Where the quality of the performance of plasticizer in the mixture of fresh concrete evaluate as improves its workability. And that has been expressed in this research the value of slump in the Abrams cone, or the value of flow time in the Maniabilimètre. The studied parameters represented by the Fineness module of used sand, sand equivalent, and uniformity coefficient of coarse aggregates, and legal size for maximum diameter for coarse aggregates and fineness degree of used cement. It has been in the research study of the effect they have on the performance of the used plasticizer in fresh formulation.

At the end of the search We were able to determine the effect of these parameters on the performance of plasticized accurately that allowed through predictive equations which have been deduced by providing the conditions most favorable for the best performance in the concrete, and is what will lead inevitably to provide in this article are expensive, and the production of High uniformity concrete and durability, which will reflect positively on the durability of concrete structures.

Tishreen University

Faculty of Civil Engineering

Engineering and Construction Management

The Effect of Concrete Formulation Parameters on the Performance of Plasticizers

A study prepared for the degree of master of sciences in Engineering and Construction Management at the Faculty of Civil Engineering

Presented By
Eng.Ghinwa Nicola

Dr. Ali KHEIRBEK

Dr. Zakai TARIFI

2012-2013