"The effect of mechanical properties of masonry wall strengthened by FRP on the in-plane structural of RC frames"

دراسة أعدت لنيل درجة الماجستير في الهندسة المدنية - قسم الهندسة الإنشائية

إعداد:
م. فراس علقم

إشراف:
د.م. مصطفى بطيقة

دمشق.2014
تأثير المواصفات الميكانيكية لجدران البلوك المقواة بالبوليمرات المسلح بالألياف (FRP) على السلوك الإنشائي للإطارات البيتونية في مستويها.

دراسة أعدت لنيل درجة الماجستير في الهندسة المدنية - قسم الهندسة الإنشائية.

إعداد:
م. فراس علقم

إشراف:
د.م. مصطفى بطيحة

دمشق 2014

لجنة الحكم السادة الأستاذة:
أ. د. محمد نزيه البغشمي إيلوش
أ. د. رياض العيسى
د. مصطفى بطيحة

كلية الهندسة المدنية
الأستاذ في قسم الهندسة الإنشائية
عضواً

الأستاذ في قسم الهندسة الإنشائية
عضواً

المدرس في قسم الهندسة الإنشائية
عضواً مشرفاً
ملخص البحث

Abstract

أثبتت الملاحظات التي حدثت مؤخراً بعد حدوث الزلازل في مناطق مختلفة من العالم ضرورة إعادة تأهيل المباني القائمة لتحمل الأحمال الزلزالية المختلفة وخاصة تلك المباني التي تم إنشاؤها قبل صدور التوصيات الحديثة المتعلقة بإنشاء المباني مقاومة الأحمال الزلزالية.

تعتبر عملية إعادة تأهيل المباني من العمليات المعقدة والمكلفة اقتصادياً ما أدى إلى ظهور العديد من الدراسات التي تبحث في طرق إعادة تأهيل المباني بكفاءة عالية وبما يحقق الجودة الاقتصادية. وقد ركزت العديد من الأبحاث الحديثة على استثمار جدران القواطع المعمارية عن طريق اعتبارها عناصر إنشائية ورفع كفاءتها عن طريق تقويتها بوسائل عديدة منها باستخدام شرائح الألياف البوليميرية المسلحة بالألاف FRP المستخدمة حديثاً.

تم في هذا البحث دراسة تأثير تغيير الخواص الميكانيكية لجدران البلوك على سلوك الإطارات البetonية المسلحة المثلثة بعدد البلوك المقاوة بشرائح الـ CFRP تحت تأثير الأحمال الجانبية في مستويها عن طريق إجراء دراسة عدائية باستخدام طريقة العناصر المحدودة (Finite Element Method, FEM) بواسطة البرنامج الإنشائي ABAQUS, V6.12، حيث تم إجراء تحليل عمدي لا حظي باخذ تأثير لا خطية المادة (Material Non-Linearity) في الاعتبار (In-Plane Cyclic Displacements).

أظهرت الدراسة الحالية دور جدران البلوك الإسمنتي في رفع كفاءة الحمل الإطارية تحت تأثير الأحمال الجانبية في مستويها بالإضافة إلى تثبيت الشرائح البوليميرية (FRP) في رفع كفاءة الحمل الإطارية وتعزيز دور الجدران لمقاومة الأحمال الجانبية في مستوي الجماد. كما أظهرت الدراسة تأثير تغيير الخواص الميكانيكية لجدران البلوك المستثناجات أن فعالية تقوية الجدران بشرائح الـ FRP تكون أكبر في حال الجدران ذات المقاومات المتوسطة على الضغط. كما بين هذا البحث تأثير عرض الشرائح على فعالية طريقة التقوية المستخدمة، حيث أن أخذ زيادة عرض الشرائح لتغطي زوايا الجدار يعطي فعالية أكبر.
شكر وتقدير

Acknowledgments

أتوجه بالشكر لكل العاملين في كلية الهندسة المدنية بجامعة دمشق من أعضاء هيئة تعليمية وفنية وإداريين. وأخص بتقدير وامتناني الكبيرين الدكتور المهندس مصطفى بطيخة على الساعات الطويلة التي قضاها معي لإنجاز هذا العمل، وعلى صبره وصبره الحثيثة ونصائحة الغنية وتشجيعه المستمر طيلة فترة البحث والتي كان لها الدور الكبير في إنجاح العمل، وأتوجه بالشكر أيضاً لأعضاء لجنة الحكم على قراءتهم المتأنية لهذه الأطروحة وملاحظاتهم الهامة لإغنائها.

أتوجه بم занимаي ومحبيتي لزملائي وأصدقائي على تشجيعهم ودعمهم، وأحتفظ بجل الامتنان لرفاقتي في مخبر البيتون ومواد البناء.

أتقدم بخالص محبتي لعائلتي الكريمة وأخص بها والدي ووالدتي وعمي على دعواتهم وعطاءهم الدائمين وإخوتي لدعمهم وتشجيعهم، وأنتم وبالعرفان والجمال الكبيرة لزوجتي وأولادي على سهرهم وكدتهم معي ودعمهم المعنوي وصبرهم وتشجيعهم لي في إنهال هذا البحث.
Contents

1. **Contents**

2. **References**

3. **Discussion**

4. **Appendix**

5. **Index**
فهرس المحتويات

1.3.3 تصرف البيتون تحت تأثير الأحمال الدورية
1.3.3 توصيف مادة البيتون في النموذج العددي في الدراسة الحالية
2.3.3 النموذج البيئي لجدار البلوك
1.2.3.3 توصيف مادة جدار البلوك في النموذج العددي
3.3.3 النموذج البيئي لفولاذ التسليح CFPR
4.3.3 العناصر المحدودة CPS4R
4.3.3 العناصر المحدودة T2D2
4.3.3 العناصر المحدودة SPR2
5.1 ربط العناصر المحدودة
5.3 ربط البيتون مع فولاذ التسليح الطولي
5.3 ربط البيتون مع الأسوار العرضية
3.5.3 ربط الإطار البيئي المسلح وجدار البلوك الإسمنتي
4.5.3 ربط جدار البلوك مع شرائح آل CFRP
6.3 الشروط المحيطة
7.3 التحليل المستخدم
8.3 دراسة تقارب الشبكة
9.3 التحقق من النموذج العددي
1.9.3 التحقق من نموذج الإطار البيئي المسلح
2.9.3 التحقق من نموذج الإطار البيئي المسلح المعمل بجدار البلوك
3.9.3 التحقق من نموذج الإطار البيئي المسلح المعمل بجدار البلوك والمقوى بالـ CFRP
4.9.3 ملخص نتائج النموذج العددي (Fw, o, FRP)
10.3 نتيجة الفصل الثالث

4. الدراسة البازميترية

4.1.3.3 مقدمة
4.2.3.3 الدراسة الإحصائية التالية كسر عينات البلوك المحلي
4.3.3 دراسة أثر تغيير الخواص الميكانيكية لجدار البلوك CFRP
4.4.3.3 دراسة أثر تغيير عرض شرائح آل CFRP
4.5.3.3 نتيجة الفصل الرابع

5. النتائج والتوصيات

5.1.3.3 مقدمة
5.1.3.3 النتائج
5.2.3.3 الأعمال المستقبلية

6. المراجع

7. Abstract
فهرس الأشكال

List of Figures

1. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري الأحادي للإعصار (2006).
2. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
3. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
4. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
5. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
6. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
7. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
8. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
9. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
10. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
11. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
12. نمط الإجهاد النشط في الجدار تحت تأثير الضغط المحوري المطبق على مستوى طبقة المونة (McKenzie et al., 2004).
فهرس الأشكال

الشكل (1-7) منحني الإجهاد-التشوه لفولاذ التسليح المستخدم (الدراسة الحالية).

(ABAQUS V6.12-1, 2012) CPS4R

(ABAQUS V6.12-1, 2012) T2D2

(ABAQUS V6.12-1, 2012) Spring2

(ABAQUS V6.12-1, 2012) Contact Pair

(ABAQUS V6.12-1, 2012) FRP

(ABAQUS V6.12-1, 2012) FRP

(ABAQUS V6.12-1, 2012) SPRING

(ABAQUS V6.12-1, 2012) SPRING
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-1)</td>
<td>(Shape Factor) (BS EN 772-1, 2000)</td>
</tr>
<tr>
<td>(1-2)</td>
<td>(McKenzie, 2001)</td>
</tr>
<tr>
<td>(1-3)</td>
<td>(BS EN 998-2, 2003)</td>
</tr>
<tr>
<td>(1-4)</td>
<td>(BS EN 1996-1-1, 2005)</td>
</tr>
<tr>
<td>(1-5)</td>
<td>(BS EN 1996-1-1, 2005)</td>
</tr>
<tr>
<td>(1-6)</td>
<td>(Batikha, 2008)</td>
</tr>
<tr>
<td>(1-7)</td>
<td>(Batikha, 2008)</td>
</tr>
<tr>
<td>(1-8)</td>
<td>(Altin et al., 2008)</td>
</tr>
<tr>
<td>(1-9)</td>
<td>(Altin et al., 2008)</td>
</tr>
<tr>
<td>(1-10)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-11)</td>
<td>(Altin et al., 2008)</td>
</tr>
<tr>
<td>(1-12)</td>
<td>(Batikha, 2008)</td>
</tr>
<tr>
<td>(1-13)</td>
<td>(Batikha, 2008)</td>
</tr>
<tr>
<td>(1-14)</td>
<td>(Altin et al., 2008)</td>
</tr>
<tr>
<td>(1-15)</td>
<td>(Altin et al., 2008)</td>
</tr>
<tr>
<td>(1-16)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-17)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-18)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-19)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-20)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-21)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-22)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-23)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-24)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-25)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-26)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-27)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-28)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-29)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-30)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-31)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-32)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-33)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-34)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-35)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-36)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-37)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-38)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-39)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-40)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-41)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-42)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-43)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-44)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-45)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-46)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-47)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-48)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-49)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-50)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-51)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-52)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-53)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-54)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-55)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-56)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-57)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-58)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-59)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-60)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-61)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-62)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-63)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-64)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-65)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-66)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-67)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-68)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-69)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-70)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
<tr>
<td>(1-71)</td>
<td>(Yuksel et al., 2010)</td>
</tr>
</tbody>
</table>
Symbols

- d_c: coefficient of stress relaxation for concrete under pressure
- d_t: coefficient of stress relaxation for concrete under tension
- σ_{co}: ultimate stress for concrete under pressure
- σ_{cu}: ultimate stress for concrete under tension
- σ_{to}: tensile stress at first micro-crack in concrete
- $\tilde{\varepsilon}_c$: crack strain in concrete under pressure
- $\tilde{\varepsilon}_pl$: plastic strain at first micro-crack in concrete
- $\tilde{\varepsilon}_c^k$: crack strain in concrete under tension
- $\tilde{\varepsilon}_pl^k$: plastic strain in concrete under tension
- E_{cm}: concrete modulus of rupture
- E_m: modulus of rupture of the block wall
- E_o: initial elastic modulus of concrete
- E_s: modulus of rupture of reinforcing steel
- G_f: FRP-to-block bond strength
- S_m: adhesion stress between block wall and FRP
- S_u: adhesion stress between block wall and FRP
- G_f: FRP-to-block bond strength
- f_b: maximum stress of FRP
- f_{ck}: characteristic stress of concrete under pressure
- f_{cm}: modulus of rupture of concrete under pressure
- f_{ctm}: tensile strength of concrete
- f_k: modulus of rupture of the wall under pressure
- f_m: modulus of rupture of the wall under tension
- f_{tm}: ultimate stress for concrete under tension
- f_y: yield stress of reinforcing steel
المعامل استعادة قساوة البيتون على الضغط

\(w_c \)

المعامل استعادة قساوة البيتون على الشد

\(w_t \)

قيمة التشوهات النسبية للبيتون المقاومة للإجهاد الأعظمي

\(f_{cm} \)

قيمة التشوه النسيب الأعظمي للبيتون على الضغط

\(\varepsilon_{c1} \)

التشوه النسيب لمادة جدار البلوك المقاومة للمقاومة الأعظمية على الضغط

\(\varepsilon_{m1} \)

التشوه النسيب الأعظمي لمادة جدار البلوك

\(\varepsilon_{mu} \)

التشوه المرن الموافق للبيتون قبل التحلب على الضغط

\(\varepsilon_{oc} \)

التشوه المرن الموافق للبيتون قبل الشق على الشد

\(\varepsilon_{ot} \)

التشوه النسيب الأعظمي لمادة جدار البلوك عند الشد عند الانهيار

\(\varepsilon_{tmu} \)

إجهاد الضغط الشاقولي المطبق على الجدار مقدراً بالـ \(N/mm^2 \)

\(\sigma_c \)

إجهادات الشد في البيتون

\(\sigma_t \)

إجهاد التماسك بين البيتون وفولاذ التشل عند الانهيار مقدراً بالـ \(N/mm^2 \)

\(\tau_f \)

إجهاد التماسك الأعظمي بين جدار البلوك وشرائح الـ FRP

\(\tau_m \)

إجهاد التماسك الأعظمي بين البيتون وفولاذ التشل مقدراً بالـ \(N/mm^2 \)

\(\tau_{max} \)

القص الأولي لمادة جدار البلوك عند إجهاد ضغط مساوية للصفر مقدراً بالـ \(N/mm^2 \)

\(G \)

معامل القص لمادة جدار البلوك مقدراً بالـ \(N/mm^2 \)

\(k \)

معامل يتعلق بتصنيف وحدات البلوك من حيث حجم الفراغات الداخلية وطريقة توضعها

\(\mu \)

معامل الاحتكاك بين سطحي المونة ووحدات البلوك
Abbreviations

- FRP: Fiber Reinforced Polymer
- UCRM: Unreinforced Concrete Masonry Walls
- RC: Reinforced Concrete
- AFRP: Armid Fiber Reinforced Polymer
- GFRP: Glass Fiber Reinforced Polymer
- CFRP: Carbon Fiber Reinforced Polymer
- FEM: Finite Element Method
- F: Finite Element
- P: Load
- F₀: Load level without infilled wall
- Fₘ: Load level with infilled wall
- Fₚ: Load level with CFRP strengthened infilled wall
- CDP: Concrete Damaged Plasticity Model
- DOF: Degrees of Freedom
الفصل الأول
Chapter 01

مقدمة
Introduction

1.1 نظرة عامة
Overview

تؤثر الهزات الأرضية (Earthquakes)akit التحديد في المناطق النشطة زلزالية في مناطق متفرقة من العالم على المنشآت المدنية المختلفة وتؤدي في بعض الأحيان إلى تدميرها بشكل كاملاً. يعود السبب الرئيسي في ذلك في عدم امتلاك المنشآت القائمة للقساوة الجانبيّة (Lateral Stiffness) للمساعدة في مقاومة الأحمال التي تسببها القوى الزلزالية,

يبين الشكل (1-1) بعض آثار الدمار والانهيارات التي تسببت بها بعض الزلازل حول العالم.

تم في السنوات الأخيرة وضع الكثير من المواصفات والمتطلبات التصميمية المعتمدة لتصميم المنشآت الهندسية لمقاومة الأحمال الزلزالية. تفترض المواصفات العالمية (BS EN 1998-1, 2004) وجود جمل إنشائية مقاومة للزلازل (1-1) وهي الحال المباني بسبب الزلازل

صور من زلزال في الصين.a
صور من زلزال في تركيا.b
صور من زلزال في اليابان.c
صور من زلزال في الجزائر.d
كتجربة جدران البيتونية أو تقنية الإطارات (Ductility) ومقاومة (Resistance) للأعمال الزلزالية، حيث تم إنشاؤها قبل صدور التوصيات الزلزالية الحديثة، فالعديد من الأبحاث برزت فاعلية واقتصادية هذه التقنيات المختلفة لتوفير كفاءة المباني في حال تعرضها للهزات الأرضية (Altin et al., 2008). قامت العديد من الأبحاث برزت فاعلية واقتصادية هذه التقنيات المختلفة لتوفير كفاءة المباني في حال تعرضها للهزات الأرضية (Altin et al., 2008). كما في الشكل (1-2)، والذي بين أكثر الطرق شيوعًا كزيادة أبعاد العناصر البيتونية المختلفة أو إضافة جداران القص ضمن فتحات الإطارات البيتونية أو تقنية الإطارات بربطها قطرياً (Obaidat, 2006).

أثبتت العديد من الأبحاث والدراسات الحديثة أثر جدران البلوك في تغيير سلوك الإطارات البيتونية، حيث تساهم هذه الجدران إيجابياً في زيادة مقاومة وقساوة الجمل الإطارية، بينما في الوقت نفسه تحول نمط انهيار الإطار البيتوني إلى النمط الهش نتيجة لانهيار الحاصل في جدار البلوك وانهيار السطح الفاصل بين كل من الإطار البيتوني وجدار البلوك (Sattar, 2013).

ساعدة تطور المواد اللاصقة (Resin) في الأونة الأخيرة وبدأت استخدام مادة البوليمرات المسلحة (FRP) في عمليات تقوية العناصر الإنشائية، حيث تميز شرائح FRP بالألتفاف يفمه وزن وسهولة القطع لتشكيلها بالألعاب الهندسية المطلوبة، كما يتميز بسهولة تثبيتها على العناصر البيتونية المختلفة (Strength) إضافة ذلك بالكثير من الميزات حيث تجمع بين المقابرة (Durability) والدموية (Obaidat, 2011), بينما في الوقت نفسه بعض الخصائص السلبية، مثل مقاومتها الضعيفة للحريق والرطوبة (Batikha, 2008).

يعتبر إنعكاس التماسك (Debonding) من المشاكل الرئيسية التي تعاني منها العناصر المقاومة بشرائح FRP، حيث يؤدي قفزة التماسك إلى إنهاء العمل المشترك بين الشرائح وسطح العناصر الإنترنت، وتحصل التماسك بعدة أشكال تتراوح بين بترطرار إحدى المادتين أو انهيار سطوح الاتصال بين المواد المختلفة، وهذا ما يؤكد ضرورة إبلاغ عمليات التنفيذ العناية اللازمة لضمان سلوك أفضل للعناصر المقاومة (Obaidat, 2011).

توصلت العديد من الأبحاث (2008; Altin et al., 2008) إلى أن استخدام شرائح FRP في تقنية جداران البلوك يؤدي إلى رفع كفاءة الإطارات البيتونية المسلحة لمقاومة الأحمال الأفقية، وتمت تباع هذه الدراسة الدقيقة الأخرى، وتتابع هذه الدراسة العديدة البحث في فاعلية استخدام هذه التقنية في التقنية.
2.1 مشكلة البحث وأهميته

Problem and Importance of this Research

تعتبر الجمل الإطارية من البيتون المسلح في المباني أحد أهم الجمل الإنشائية لمقاومة الأحمال الإنشائية ويمكن استخدامها بمفردها لرفع كفاءة الإطار. يستخدم الفونت風格 للملحق فيما لم يتم الاعتبار
بتفصيل التحليل. يغير سلوك الجمل الإطارية بوجود القواطع العضوية من البلوك غير المسلح ضمن مجازها حيث بيئة الأبحاث بأن المقاومة تزداد ويصبح الانهيار من النوع الهش، ومن هنا كان التوجه دينياً لأخذ تأثير هذه الجدران على السلوك الإنشائي بعين الاعتبار عند تصميم المباني المختلفة، لا بل استخدامها كعناصر إنشائية. ورفع كفاءة هذه الجدران ومساهمتها في مقاومة الأحمال الجانبية كان لابد من تقوية هذه الجدران بطرق مختلفة سواء التقليدية أو الحديثة من فيها، حيث تم في الأونة الأخيرة تدفق القواطع من البلوك غير المسلح بمادة الـFRP. أجرت الأبحاث بأنها تتحول نزولاً تختلف عن الطرق التقليدية كالمقاومة المرتبطة نسبة للوزن وسرعة وسهولة التنفيذ دون الحاجة لإخلاء المبنى من شغاله على سبيل المثال. كما تبين أنها تقلل من انهيار الجدران خارج مستوى المواد (Out-of-Plane Failure) بالإضافة إلى رفع درجة مطاعنة الجملة ككل.

من هنا فإن أهمية هذا البحث تأتي في تقصي سلوك الجمل الإطارية مع جدران البلوك ضمن مجازها بعد تقوية هذه الجدران بالـFRP.

3.1 الهدف من البحث

Objective of this research

يهدف هذا البحث إلى دراسة تأثير التغير في الخصائص الميكانيكية لجدران البلوك الإسمنتي المئوية للإطارات والموقوفة باستخدام مادة الـCFRP على تغير سلوك هذه الإطارات عند تعرضها للأحمال الجانبية في مستوياتها.

4.1 طرائق البحث

Methods of Research

تم في هذا البحث إجراء دراسة عددي، باستخدام طريقة العناصر المحدودة (Finite Element Method، FEM) بواسطة البرنامج الإنشائي (ABAQUS، V6.12)، لسلوك الإطارات البيتونية المصنوعة بالوطرين البلوك المقاو، بشرائح الـCFRP تحت تأثير الأحمال الجانبية في مستوياتها. حيث تم إجراء تحليل عددي خطي وادي تأثير خطية المادة (Material Non-Linearity) عبر الانتشار وذلك بتخطيط انتقالات دورية. في مستوى جانحين الإطار البيتونى المسلح (In-Plane Cyclic Displacements).

5.1 محتويات الأطروحة

Research Outline

تم تقسيم هذه الأطروحة إلى خمسة فصول كما يلي:

الفصل الأول: نظرية عامة ومقدمة عن البحث بالإضافة إلى مشكلة البحث والهدف منه وطرائق البحث المتبعة فيه ومحتويات هذه الأطروحة.

الفصل الثاني: تم فيه تحليل ضوء على الأبحاث التي بنت دور الجدران في رفع كفاءة الجمل الإطارية لمقاومة الأحمال الجانبية في مستوياتها بالإضافة إلى تحليل استخدام شرائح الـFRP لرفع كفاءة الجمل الإطارية المماثلة بجسدان، ومن ثم تم التركيز على الخواص المختلفة للمواد المشتركة للجملة حيث تم البدء بالحديث عن المواد المشتركة للجدران من
ووحدات وموئول وخصائص كل منها وكيفية حساب الخصائص الميكانيكية للجدران، بالإضافة إلى الإضاءة على طرق انهيار هذه الجدران تحت تأثير الأحمال المختلفة. ثم تم الانتقال للحديث عن خصائص المواد المكونة للإطارات البيتونية المسلحة من بيتون وفولاذ تسليح والعمل المشترك للمادتين لتكوين مادة البيتون المسلل. بعدها تم التطرق لأشكال انهيار الجمل الإطارية المملوءة بجدران تحت تأثير الأحمال الجانبية في مستويها. ومن ثم تم عرض خصائص مادة الـ CFRP وطريقة عملها والتماسك بينها وبين السطح الحال من بيتون أو جدار. في النهاية يتم عرض بعض الدراسات السابقة التي تتناول هدف البحث.

الفصل الثالث: يتضمن التحليل الإنشائي باستخدام طريقة العناصر المحدودة، حيث تم في البداية الحديث عن البرنامج الإنشائي المستخدم ومن ثم التطرق إلى النماذج البيئية لكل من المواد المشكلة للجملة كالبيتون وفولاذ التسليح وجدران البلوك إضافة إلى شرائط الـ CFRP. بعدها تم استعراض العناصر المحدودة المستخدمة في بناء النموذج والطرق التي تم اختيارها لربط العناصر الممثلة للمواد المختلفة ومن ثم تم اختيار التحليل المناسب والشروط المحيطة. فيما بعد تم شرح عملية بناء النموذج بمرحلته المختلفة. ثم في نهاية الفصل التحقق من صحة النموذج العديدي بمقارنة نتائجه مع نتائج الدراسة التجريبية المعتمدة.

الفصل الرابع: تم التعرض فيه للدراسة الإحصائية التي تمت على نتائج اختبار عينات من البلوك المحلي، ليتم بعدها عرض الدراسة البارامترية والتي قسمت إلى مرحلتين: المرحلة الأولى تناولت تأثير تغيير الخواص الميكانيكية لجدران البلوك على سلوك الجملة الإطارية المملوءة بجدران البلوك والمقواة بالـ CFRP. بينما تطورت المرحلة الثانية إلى تأثير تغيير عرض الشرائح على فعالية الجملة.

الفصل الخامس: يتضمن استعراض النتائج التي خرج بها هذا البحث، بالإضافة إلى التوصيات التي يمكن أخذها بعد الاعتبار في الدراسات المستقبلية.
الفصل الثاني

Chapter 02

المراجعة البحثية

Literature Review

1.2 مقدمة

Introduction

تقسم الجمل الإنشائية المستخدمة لتصميم المنشأت لمقاومة الأحمال الأفقية إلى جمل تعتمد جدران القص (Shear wall system)، فيما تعتمد جمل أخرى البنية الإطارية (Frame system) جدارية وإطارية معا. ولكن من هذه الجمل ما يميزها عن الأخرى إيجابا أو سلبا (ملحق الكود العربي السوري الثاني، 2005).

تعتبر الجمل الإطارية المستخدمة في تصميم المنشأت المختلفة ذات أهمية كبيرة، كونها تجمع بين مقاومة الأحمال الشاقولية والمقاومة العالية لمقاومة الأحمال الأفقية المطبقة على المنشأ ما يجعلها قدرة أكبر على تبديد الطاقة خلال تعرض المنشأ للأحمال الأفقية.

عادة ما يتم ملء الجمل الإطارية في المنشأت بجدار مصنوعة من مواد مختلفة تستخدم كقواطع معمارية لتأمين العمل الوظيفي للمنشأ. ولا يتم التطرق إليها إنشائيًا. أثبتت المشاهدات المختلفة لتصريف المشاهدات تحت تأثير الأحمال الأفقية أن وجود هذه الجدران يؤثر في تغيير أنماط انهيارها، وغالبًا لا يتم التطرق لهذا التأثير في مرحلة التصميم، حيث أن وجود هذه الجدران يؤدي إلى العديد من الظواهر الإيجابية منها والسلبية، فمن الظواهر السلبية مثلًا ظاهرة الطابق القصيرة والعمود القصير وظهور عزم فتل في المنشأت تختلف عن التصميمية، وبين الشكل (2-1) أشكالًا مختلفة للظواهر السلبية السابق ذكرها (Tabeshpour, 2012).

ومن جهة أخرى تؤثر هذه الجدران إيجابيًا بزيادة قساوة (Resistance) والأعمال الجاذبة في مستوياتها، حيث يمكن من خلال الشكل (2-2) استنتاج تأثير هذه الجدران في رفع قيم القص الفاعلي للأعمال البينونية لقيم تصل إلى أكثر من 100% مما هي عليه عندما تكون مراعيه (Crisafull, 2010) (Frame Bare). بخصوص ظاهرة تشكل الأعمدة القصيرة وظاهرة تشكل الطابق القصير، ومن جهة أخرى تؤثر هذه الجدران إيجابيًا بزيادة قساوة (Resistance) والأعمال الجاذبة في مستوياتها، حيث يمكن من خلال الشكل (2-2) استنتاج تأثير هذه الجدران في رفع قيم القص الفاعلي للأعمال البينونية لقيم تصل إلى أكثر من 100% مما هي عليه عندما تكون مراعية (Crisafull, 2010) (Frame Bare).

الشكل (2-1) بعض الأظواهر الناتجة عن ملء الجمل الإطارية بالجدران (Tabeshpour, 2012).

(1) ظاهرة تشكل الأعمدة القصيرة.
(2) ظاهرة تشكل الأعمدة القصيرة.
(3) ظاهرة تشكل الطابق القصير.
(4) تأثير الجدران على نشوء الفتل في الطابق اللين.

(5) تأثير الجدران على نشوء الفتل في الطابق اللين.

(6) رسم تخطيطي بين آليته تشكل الطابق اللين.
المراجعة البحثية

المادة المستخدمة وطريقة ربطها مع الإطارات، حيث يؤثر اختلاف القوة النسبية بين الإطارات والمادة المالفة في تغيير نسبة زيادة فعالية الجمل وأنماط الانهيار المتوقعة، بينما تتأثر مطاطة الحمل الجديدة بخواص المادة المالفة وطموحة عدد الإطارات الببتونية وتصلح الجدران المالفة في حال وجودها ضمن الإطارات (Murty and Jain, 2000).

الشكل (2-2) تأثير ووجود الجدران على زيادة مقاومة الإطارات لتحمل الأحمال الأفقية (Crisaful, 2010).

ومن هنا جاءت الدراسات الحديثة لتؤكد على ضرورة أخذ تأثير الجدران المالفة المدعمة مطاطة الـ FRP في التصميم كنظام التربين (Steel Brace).

ولأهمية كون انهيار مادة الجدار سيؤدي إلى إنهيار الجملة ككل ولضمان استمرار عمل هذه الجدران إلى مراحل متقدمة من عمل الجملة الجديدة، فقد احتجت دراسات أخرى على التأهيل المباني القائمة على طرق متعددة لتقوية الجدران المالفة ورفع كفاءتها، وكان من أهم هذه الطرق الحديثة استخدام مادة الـ FRP بأشكالها المختلفة كونها تجمع الفعالية وسهولة وسرعة التطبيق.

يمكن أن نلخص إلى أهمية أخذ تأثير الجدران المالفة في التصميم كنظام التربين لرفع مقاومة الإطارات لتحمل الأحمال الإطارية لمقاومة الأحمال الإطارية الجانبية بما فيها الإطارات الزائدة، خاصة لإعادة تكييم وتأهيل المناشط القائمة والمصممة قبل صدور تعليمات التصميم الزائدة. كما أن رفع كفاءة الجدران المالفة بالطرق الجديدة تلقائية استخدام شرائح الـ FRP تعطي قيمة مضافة لهذه الجدران وتساهم في الوصول إلى النتيجة المرجوة مع تحقيق اقتصادية عالية، فبالرغم من أن بعض المناشط الموجودة ملحياً مطابقة للحالة المذكورة، ركزت هذه الدراسة على معايير الجدران المالفة المدفوعة بالـ FRP في تحقيق ورفع كفاءة الحمل الإطارية وتتم الإقاصре في هذا البحث على دراسة الجدران المصنوعة من وحدات بلوك إسمنتية غير مسلاحة كونها الأكثر انتشاراً وشيوعاً في البيئة المحلية.
المراجعة البحثية

1.1 جدران وحدات البلوك الإسمنتية غير المسلحة

1.1.1 مقدمة

يعتمد إنشاء الجدران بشكل عام على استخدام وحدات البلوك الإنشائية (Units) المصنعة من مواد مختلفة كالمادة الإسمنتية الشائعة الاستخدام في البيئة المحلية وربطها باستخدام المونة الإسمنتية (Mortar)، وبالتالي تعتدي خصائص الجدران بشكل أساسي على خصائص كل من الوحدات المستخدمة والمونة وطريقة ربطها والتصرف المتبادل فيما بينها.

يمكن أن تكون هذه الجدران غير مسلحة أو مسلحة وفي بعض الحالات يتم استخدام سبي الإجهاد (Hendry et al., 2004).

تتطرق الفقرات التالية إلى خصائص الجدران غير المسلحة المصنعة من وحدات البلوك الإسمنتية والمرتبطة فيما بينها باستخدام المونة الإسمنتية، إضافة لسلوك هذه الجدران وأشكال انهيارها.

1.1.2 وحدات البلوك الإسمنتية

2.2 جدران وحدات البلوك الإسمنتية غير المسلحة

Unreinforced Concrete Masonry Walls (URCM)

Introduction

2.2.2 Concrete Masonry Blocks

يتتم اختيار وحدات البلوك الإسمنتية اعتمادًا على معايير مختلفة تتعلق بخصائص المنشأ أو مكان الاستخدام مثل القوة والديمومة ومقاومة الحرارة والانهيار الحراري أو الصوتية إضافةً للمعايير الجمالية. وتختلف أنواع وحدات البلوك حيث تصنع بأعداد مختلفة تلبية احتياجات البناء المختلفة بحيث تقلل من عمليات قص وحدات البلوك أثناء البناء ما أمكن، وتشكل وحدات البلوك المفرغة جزئياً (Perforated) ووحدات البلوك المصمتة (Solid) ووحدات البلوك الخليوية (Cellular) والبلوك المغلفة جزئياً (Hollow) المصنعة من مواد إسمنتية مختلفة.
من الناحية الإنشائية تعتبر مقاومة وحدات البلوك على الضغط (Compressive Strength) من أهم الخصائص التي تؤثر في تصرف وحدات البلوك والجدران المشكلة منها فيما بعد، حيث تعتمد مقاومة الضغط لوحدات البلوك على المواد المستخدمة في تشكيلها ونسب هذه المواد إضافة إلى شكل وحدات البلوك وأبعادها وحجم الفراغات وتوزيعها ونسبة حجم الفراغات إلى الحجم الكلي لوحدة البلوك.

تفضل بعض المراجع (2003, 3-771) اعتماد مقاومة الضغط المحصوبة باستخدام السطح الصافي لمقطع وحدة البلوك بعد طرح مساحة كل الفراغات الموجودة في مقطع الوحدة البلوك كما سيرد لاحقاً، وتختلف المقاييس على الضغط لوحدات بلوك البناء الإسمنتية مقاسة على السطح الصافي لوحدة البلوك وقد تصل إلى 40N/mm²، كما وتأثر خصائص وحدات البلوك المختلفة كثيراً بطريقة التصنيع المعتمدة وشروط حفظها ومستوى الجودة المتبعة أثناء عملية الإنتاج (Hendry et al., 2004).

تم الاعتماد خلال هذه الدراسة على الطريقة المتباعدة في المواصفة الأوربية (2003, 3-771) التي تعرف مقاومة وحدات البلوك على الضغط بمقاومة المتوسطة (Mean compressive strength) ملاحظة بحالات ،أو N/mm² عند مستوى ثقة (Confidence level) بنسبة 95% بالمقاومة المميزة (Characteristic compressive strength) مقاسة بالـ N/mm² .

تم حساب مقاومة وحدات البلوك على الضغط من خلال فحص العينات وفق المواصفة الأوربية (772-000, 2000), حيث يتم حسابها بتقسيم الحمل الأقصى الذي تحمله وحدة البلوك المختبرة على مساحة التحميل (Net Loaded Surface). تحدد مساحة التحميل بالمساحة الصافية للسطح المعرض للضغط (Area Gross Area) ، وفلا إنه يتم اعتماد السطح الكامل لوحدة البلوك المختبرة.

لاعتماد قيمة مرجعية واحدة للعينات المختلفة بالأبعاد والأشكال يتم تحويل مقاومة الضغط لوحدات البلوك إلى مقاومة الضغط المتفقة (Normalizd compressive strength) إلى درجة حرارة الغرفة وذلك بضرب المقاييس الناتجة من الاختبار بمعامل الشكل 8 المتعلق بأبعاد وحدات البلوك والموضوح في الجدول (2-1), حيث يمكن استعمال عرض العينة المختبرة وارتفاعها بين سطوح التحميل تحديد معامل الشكل. وقد تم اعتماد هذه القيمة المرجعية في حساب مقاومة الجدار في الدراسة الحالية.

(2-4) بعض أشكال الوحدات البلوك الإسمنتية (Hendry et al., 2004).
المونة الإسمنتية

تعتبر المونة الوسط الرابط الذي يجمع وحدات البلوك مع بعضها لتصنع سوياً مادة الجدار وتقوم بتوزيع الأحمال بشكل منتظم بين وحدات البلوك. إضافةً لعملية الربط، فإن المونة تقوم بملء الفراغات بين وحدات البلوك وبالتالي تحسن من مقاومة الجدران لانتقال الرطوبة والصوت والحرارة (McKenzie , 2001).

للمونة أنواع متعددة تختلف باختلاف المواد الأساسية المشكَّلة لها وتعتبر المونة الإسمنتية من الأنماط الشائعة الاستخدام في البيئة المحلية في سوريا، حيث يدخل في تركيبها كل من الرمل والإسمنت والماء بنسب مختلفة. وعادة ما يتم تحصين خصائص المونة الإسمنتية كالزروحة وقابلية الفرد وقابلية التشغيل وقدرة المونة على الاحتفاظ بالماء للمونة الطازجة ومقاومة التقدم زيادة ومقاومة مياه الامطار والديمومة للمونة المتصلة. بناءً على الخصائص السابقة يتم اختيار المونة المناسبة حيث يبين الجدول (2) المجتزأ من المواصفات البريطانية (BS 5628:Part 1: 1992) تصنيف المونة إلى أربعة أصناف تتغير من (i) إلى (iv) والمرتبة تناظرًا من المقاومة المتوسطة الأعلى من المونة إلى الأدنى إما تشير 1N/mm² للصنف (i) و (iv) 11N/mm². مقدار تعادل محلة المونة المتصلة على الضغط (M) مقدارها (SN/mm²) ويمكن بالحرف M ترمز إلى مادة ذات مقاومة على الضغط (SN/mm²) كما هو مبين بالجدول (2).

<table>
<thead>
<tr>
<th>Width mm</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>≥250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height mm</td>
<td>40</td>
<td>0,80</td>
<td>0,70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0,85</td>
<td>0,75</td>
<td>0,70</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>0,95</td>
<td>0,85</td>
<td>0,75</td>
<td>0,70</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1,15</td>
<td>1,00</td>
<td>0,90</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1,30</td>
<td>1,20</td>
<td>1,10</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1,45</td>
<td>1,35</td>
<td>1,25</td>
<td>1,15</td>
</tr>
<tr>
<td></td>
<td>≥250</td>
<td>1,55</td>
<td>1,45</td>
<td>1,35</td>
<td>1,25</td>
</tr>
</tbody>
</table>

NOTE: Linear interpolation between adjacent values of shape factor is permitted.

h: Height after surface preparation.
الخواص الميكانيكية لجدران وحدات البلوك الإسمنتية

Mechanical Properties of URCM

1.1.1 الخواص الميكانيكية لجدران وحدات البلوك الإسمنتية (Composite material)، حيث تتشكل الجدران بشكل عام من وحدات البلوك المصموعة من مواد مختلفة والمرتبطة إلى بعضها باستخدام أنواع متعددة من المونة (Mortar). وبالتالي تعتبر الجدران من الأوساط غير المتجانسة (non-homogeneous) والتي تتمتع بخواص مختلفة في كل اتجاه من اتجاهات المادة (Orthotropic)، ما يجعل من الضروري تقدير قيمة الخواص الميكانيكية المختلفة لمادة جدار البلوك ككل (Hendry et al., 2004)، حيث تختلف هذه الخواص باختلاف خواص وحدات البلوك والمونة الرابطة حيث أن جداراً مصنوعة من نفس وحدات البلوك والمونة ولكن بتوجيه ومقاسات مختلفة لوحدات البلوك تمكّنها خواصاً مختلفة، وهو ما يجعل الخواص المختلفة لجداراً ترتبط بالكثير من العوامل التي تؤثر عليها ومن هذه العوامل:

- خواص وحدات البلوك المستخدمة وخواص المونة الرابطة والاختلاف النسبي بين خواص هاتين المادتين.
- أبعاد وحدات البلوك وأشكالها وبينية المصنوعة أو المفرغة أو المفرغة وتوضعها في الجدار وطريقة الربط والبناء المستخدمة.
- سمك المونة المستخدمة.

الجدول (2.3) أصناف المونة الإسمنتية (2003, 2-998)

<table>
<thead>
<tr>
<th>Mortar designation</th>
<th>Type of mortar (proportion by volume)</th>
<th>Mean compressive strength at 28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) increasing strength</td>
<td>(i) Increasing ability to accommodate movement, e.g. due to settlement, temperature and moisture changes</td>
<td>N/mm²</td>
</tr>
<tr>
<td>(ii) increasing strength</td>
<td>(ii) Increasing ability to accommodate movement, e.g. due to settlement, temperature and moisture changes</td>
<td>N/mm²</td>
</tr>
<tr>
<td>(iii) increasing strength</td>
<td>(iii) Increasing ability to accommodate movement, e.g. due to settlement, temperature and moisture changes</td>
<td>N/mm²</td>
</tr>
<tr>
<td>(iv) increasing strength</td>
<td>(iv) Increasing ability to accommodate movement, e.g. due to settlement, temperature and moisture changes</td>
<td>N/mm²</td>
</tr>
</tbody>
</table>

الجدول (2.4) أصناف المونة الإسمنتية (2001, 0-2)

<table>
<thead>
<tr>
<th>Class</th>
<th>M 1</th>
<th>M 2.5</th>
<th>M 5</th>
<th>M 10</th>
<th>M 15</th>
<th>M 20</th>
<th>M d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength N/mm²</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>d</td>
</tr>
</tbody>
</table>

(d is a compressive strength greater than 25 N/mm² declared by the manufacturer.)
إن من أهم خواص الجدران والتي ترتبط بشكل وثيق بالتصميم الإنشائي لهذه الجدران هي الخواص المرتبطة بالمتانة والمتانة والمرونة مثل مقاومة الجدار على الضغط والقص والانعطاف بالإضافة إلى عامل مرونة مادة الجدار والتمدد الحراري وغيرها من الخواص (McKenzie, 2001). وينطبق نفس الكلام على الجدران المكونة من وحدات بلوك إسمنتية مربوطة بمونة إسمنتية والتي هي جوه الدراسة الحالية.

(Masonry Compressive Strength)

عادة ما تكون مقاومة الجدار على الضغط هي القيمة المسيطرة في التصميم كون الجدران بشكل عام تعمل على الضغط وخاصة في الجدران الحاملة (Load-bearing walls) مع مقاومة الجدار على الضغط أكبر بكثير مقايزة.

يبين الشكل (2-5a) الشكل العام لعلاقة الإجهاد-التشوه لمادة الجدار تحت تأثير الضغط المحوري الأحادي الاتجاه، حيث يظهر جلياً العلاقة اللاخطية بين الإجهاد والتشوه في المراحل المختلفة وصولاً إلى الانهيار، بينما تمثل المساحة المحصورة تحت منحنى الإجهاد-التشوه طاقة الأنشوب (FractureEnergy) أو الطاقة الممكنة امتصاصها من قبل المادة حتى الوصول إلى الأنشوب التام (Özen, 2006).

عند تعرض الجدار لضغط منتظم عمودي بين وحدات البلوك يكون الأنشوب بشكل أساسي بسبب تشظيات الشد الشاقيقة الموازية لاتجاه التحميل نتيجة تفيد شوه المونة المتكرر سابقًا، أو بسبب تشظيات القص التي تظهر في المناطق الضعيفة ويدعم نوع الأنشوب حسب المقاومة النسبية بين المادة ووحدات البلوك، وبين الشكل (2-7) التشظيات الحالية نتيجة تعرض الجدار لضغط منتظم أحادي المحور.
ومن الملفت للنظر أن مقاومة الجدار تكون أقل من مقاومة وحدات البلوك المشكولة له بينما تزيد بكثير عن مقاومة المونة بين وحدات البلوك، حيث تبين أن مقاومة الجدار تتأثر بالجذر التربيعي لمقاومة الوحدات مقارنة مع الجذر التكعبي أو الرباعي لمقاومة المونة. كما أنه نتيجة لإجراءات الشد الناتجة في وحدات البلوك من تقيد تشوه المونة، فإن زيادة ارتفاع وحدات البلوك يزيد من مقاومة الجدار ككل، وفي نفس الوقت فإنه لنفس ارتفاع وحدات البلوك تتناقص مقاومة الجدار بزيادة سماكة المونة ويتناقص هذا التأثير بتناقص نسبة سماكة المونة إلى ارتفاع وحدات البلوك المستخدمة (Hendry et al., 2004).

(الشكل 2-6) تأثير الضغط الأحادي على الجدران المطبق بشكل عمودي على مستوى طبقة المونة (Özen, 2006).

(الشكل 0-6) تأثير الضغط الأحادي على الجدران المطبق بشكل عمودي على مستوى طبقة المونة (McKenzie, 2001).

فيما سبق العوامل الكثيرة التي تؤثر في مقاومة الجدار على الضغط ولذلك لاعتماد أسس تصميمية للجدران قامت المواصلات العالمية باعتماد معادلات تجريبية تأخذ بين الاعتبار تداخلات خواص المواد المختلفة واختلاف تصرفاتها والتأثير المتبادل بينها. تم خلال الدراسة الحالية الاعتماد على المواصفة الأوروبية (BS EN 1996-1-1 1996-1996 General Purpose) لحساب خواص الجدار، حيث تحدد مقاومة الجدار المصنوع باستخدام مونة للأغراض العامة (Mortar) والتي لا تقل سماكتها عن 3mm بالعلاقة التالية:

\[f_k = k \cdot f_b^{0.7} \cdot f_m^{0.3} \]

(1-2)
ال ללא:

المراجعات البحثية

١)

المقاومة المميزية لمادة الجدار على الضغط مقدّرة بالـ f_k، حيث

\[f_k = \text{Characteristic compressive strength of the masonry, in N/mm}^2 \]

مقاومة الضغط الاسمية المكافئة لمادة الجدار على الضغط f_b، مقدّرة بالـ N/mm^2.

\[f_b = \text{Characteristic compressive strength of the masonry, in N/mm}^2 \]

المقاومة المكونة المطلوبة على الضغط f_m، مقدّرة بالـ N/mm^2.

\[f_m = \text{The compressive strength of the mortar, in N/mm}^2 \]

معامل يتعلق بتوصيف وحدات البلوك من حيث حجم الفراغات الداخلية وطريقة توضعها.

\[k \]

٢)

ويتطلب لصحة تطبيق العلاقة (١) أن لا تزيد مقاومة المونة عن ٢٠ N/mm2 أو $f_b/2$، بينما يتم تحديد المعامل k، ويشترط لصحة تطبيق العلاقة (٢) أن لا تزيد مقاومة المونة عن ٢٠ N/mm2.

عند صنع وحدات البلوك المستخدم من الجدول (٢-5) وذلك حسب نوع المواد المستخدمة في تصنيع وحدات البلوك وحجم الفراغات الداخلية نسبة إلى الحجم الكلي لوحدات البلوك وطريقة توضع هذه الفراغات أثناء عملية البناء.

تتبع وحدات البلوك الإسمنتية الشائعة الاستخدام محلياً في أغلبها التصنيف الثاني (Group 2) وفق التصنيف الوارد (Hendry et al., 2004) في جدول (١-١) وهي القيمة التي تم اعتبارها خلال الدراسة الحالية.

أعلاه ما يعني أن قيمة المعامل $k=0.45$ هي القيمة التي تم اعتبارها خلال الدراسة الحالية.

تعطى العلاقة بين الإجهاد والتشوه للجدران تحت تأثير الضغط بعلاقة من الدرجة الثانية. تتأثر بمقاومة الجدار على الضغط (٢٠٠٥، ١-١، ١٩٩٦-١٩٩٦)، ويبين التشكيل (٢-9) منحنى الإجهاد التشوه حيث يمثل المنحنى رقم (١) العلاقة النموذجية (Typical) والتي تحدد تصرف مادة الجدار على الضغط كعلاقة خطية متساوية لـ ٠.٣٣ f_m، حيث يعتبر f_m قيمة المقاومة المتوسطة الأعظمية على الضغط لوحدة الجدار، ثم تأخذ العلاقة شكلاً لا f_m مساوياً لـ $0.33f_m$ حتى الوصول إلى الإجهاد الأعظمي (Inelastic) الذي تتحمله المادة، حيث تبلغ قيمة التشوه النسيبي الموقعة ε_{cum}.

في دراسة Hendry et al., 2004، بحيث تتضمن العلاقة الحالية (Idealized) ε_{cum}، حيث تأتي قيمة التشوه النسيبي الموقعة ε_{cum}.
المقاومة المميزة على الضغط لمادة الجدار، حيث تزداد المقاومة مع زيادة التشوه النسبي حتى الوصول إلى الإجهاد المميز على الضغط f_k عند التشوه النسبي e_{m1} ومن ثم لا يبقى هذا الإجهاد ثابتا حتى الوصول إلى التشوه النسبي الأعظمي e_{mu}. يعبر المنحنى رقم (3) عن القيم التصميمية والتي يمكن الحصول عليها بقسمة الإجهاد المميز على ضغط على معامل المادة γ_M.

يحدد معامل المرونة الآني (Short term Modulus of Elasticity) E_m لمادة الجدار بميل الخط القاطع (vũع التصميم) على الإجهاد الأعظمي على الضغط f_k، بينما يحدد معامل القص G (Shear Modulus) بـ 40% من قيمة معامل المرونة.

$$E_m = 1000.f_k$$

(2-2)

الجدول (2-4) المعامل k (BS EN 1996-1-1, 2005).

<table>
<thead>
<tr>
<th>Masonry Unit</th>
<th>General purpose mortar</th>
<th>Thin layer mortar (bed joint ≥ 0.5 mm and ≤ 3 mm)</th>
<th>Lightweight mortar of density ρ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>Group 1: 0.55, 0.75</td>
<td>Group 1: 0.55, 0.75</td>
<td>$600 \leq \rho_d \leq 800$ kg/m3</td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.45, 0.70</td>
<td>Group 2: 0.45, 0.70</td>
<td>$800 \leq \rho_d \leq 1300$ kg/m3</td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.35, 0.50</td>
<td>Group 3: 0.35, 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: 0.35, 0.35</td>
<td>Group 4: 0.35, 0.35</td>
<td></td>
</tr>
<tr>
<td>Calcium Silicate</td>
<td>Group 1: 0.55, 0.80</td>
<td>Group 1: 0.55, 0.80</td>
<td>$600 \leq \rho_d \leq 800$ kg/m3</td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.45, 0.65</td>
<td>Group 2: 0.45, 0.65</td>
<td>$800 \leq \rho_d \leq 1300$ kg/m3</td>
</tr>
<tr>
<td>Aggregate Concrete</td>
<td>Group 1: 0.55, 0.80</td>
<td>Group 1: 0.55, 0.80</td>
<td>$600 \leq \rho_d \leq 800$ kg/m3</td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.45, 0.65</td>
<td>Group 2: 0.45, 0.65</td>
<td>$800 \leq \rho_d \leq 1300$ kg/m3</td>
</tr>
<tr>
<td></td>
<td>Group 3: 0.40, 0.50</td>
<td>Group 3: 0.40, 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 4: 0.35, 0.35</td>
<td>Group 4: 0.35, 0.35</td>
<td></td>
</tr>
<tr>
<td>Autoclaved Aerated Concrete</td>
<td>Group 1: 0.55, 0.80</td>
<td>Group 1: 0.55, 0.80</td>
<td>$600 \leq \rho_d \leq 800$ kg/m3</td>
</tr>
<tr>
<td></td>
<td>Group 2: 0.45, 0.75</td>
<td>Group 2: 0.45, 0.75</td>
<td>$800 \leq \rho_d \leq 1300$ kg/m3</td>
</tr>
<tr>
<td>Manufactured Stone</td>
<td>Group 1: 0.45, 0.75</td>
<td>Group 1: 0.45, 0.75</td>
<td>$600 \leq \rho_d \leq 800$ kg/m3</td>
</tr>
<tr>
<td>Dimensioned Natural Stone</td>
<td>Group 1: 0.45, 0.75</td>
<td>Group 1: 0.45, 0.75</td>
<td>$800 \leq \rho_d \leq 1300$ kg/m3</td>
</tr>
</tbody>
</table>

† Combination of mortar/unit not normally used, so no value given.

\[
\tau = \tau_o + \mu \sigma_c
\]

حيث القص الأولي عند إجهاد ضغط مساوية للصفر بينما يمثل \(\mu\) معامل الاحتكاك بين سطح البلوك والمونة ووحدات البلوك ويتم إجهاد الضغط الشاولوني المطبق (Hendry et al., 2004).

البلوك (2-10) أن وجود الضغط الشاولوني (0 > \(\sigma_c\)) يؤدي لزيادة الإجهاد المماس بشكل كبير بينما تنخفض قيم الإجهاد المماس في حال (0 = \(\sigma_c\)).
3.1.0.0 (مقاومة الجدار على الشد)

تنشأ الإجهاد الشاذة في الجدران عند تعرضها للأحمال الجانبية في مستويها كأحمال الرياح والهزات الأرضية والإجهاد الناشئ عن النتوءات الحرارية، وتتأثر مقاومة الجدران على الشد بقوة الالتصاق بين المونة ووحدات البلوك وتميز الجدران بمقاومة صغيرة نسبياً على الشد تجعل من اعتبارها كقيم تصميمية قليل الأهمية ما يؤدي عادة إلى إهمال تحمل الجدران على الشد عند التصميم. ويعتبر انهيار الجدران على الشد اهماً ومفاجئاً ويمكن التعبير عنه بالمنحني الموضح بالشكل (2-11) والذي يمثل علاقة إجهاد الشد (σ) واتساع الشق (δ)، حيث تزداد المقاومة على الشد حتى الوصول إلى إجهاد الشد الأعظمي (f_t) ومن ثم تنخفض بشكل مفاجئ حتى خروجه عن العمل عند قيمة معينة لاتساع الشق (δ). (Fracture Energy, G_f)، ويعبر عن مساحة المنطقة تحت منحنى الإجهاد-اتساع الشق بطاقة التصدع (G_f).

(Özen, 2006).

أشكال انهيار جدران ووحدات البلوك الإسمنتية

Failure Modes of URCM

تتعلق أشكال الانهيارات في الجدران غير المسلحة بشكل رئيسي بالأحمال المطبقة على الجدار، في الوقت الذي تؤدي فيه الأحمال الشاذة لنشوء شقوق شاذة موازية للأحمال المطبقة كما سبق ذكره في الفقرة (4.2.2.1)، يؤدي تطبيق أحمال عمودية على سطح الجدار إلى حدوث انهيارات خارج مستوي الجدار (Out-of-Plane) الانعطاف (Flexural Failure) والذي يحدث في طبقة المونة بأحد النماذج المبينين في الشكل (2-12) ويتأثر بمقاومة المونة ومقاومة الالتصاق بين المونة ووحدات البلوك (McKenzie, 2001).
المراجعة البحثية

الشكل (12) أنماط انهيار الجدران - حالة الأحمال عمودية على سطح الجدار (Mckenzie , 2001).

أما في الحالة التي تكون فيه الأحمال مطبقة في مستوي الجدار (In-Plane) كما هو الحال في الدراسة الحالية، فإن أشكال الانهيار المحتملة يمكن تلخيصها بثلاثة أنماط مبينة في الشكل (2-13)، وتتأثر بشكل كبير بمقدار الأحمال الشاقولية المتزامنة مع الأحمال في مستوي الجدار ومقاومة مادة الجدار، إضافة لتأثيرها بنسبة ارتفاع الجدار إلى عرضه أو ما يسمى بنسبة الواجهة (Aspect Ratio).

النمط الأول من الانهيار، انعكاس الانعطاف (Flexure Rocking Failure) ويبدو واضحًا في الشكل (2-13-a) ويعرف أيضًا بانعطاف الأقلاب (Overturining)، ويحصل عندما تكون نسبة الأحمال الشاقولية إلى الأفقية صغيرة وتكون نسبة الواجهة للجزء المربوط عاليا تتزامن مع النقطة القوية على الجدار إلى قوى القص المطبقة على الجدار، بحيث يمكن أن تحصل عندما تكون مقاومة المادة ووحدات البلوك بالانسجام بينهما كافية لتحمل الأحمال الشاقولية ما يؤدي إلى انقلاب الجدار حول إحدى زواياه التي بدورها يمكن أن تتحطم نتيجة لحصول إجهاد الضغط مرتفع، أو يمكن أن تتحطم نتيجة لحصول إجهاد الضغط مرتفع في النقطة القوية (Vaughan, 2010).

النمط الثاني للانهيار هو انعكاس القص (Shear Failure) ويتسم بحداثة تشوهات قطرية في الجدار تظهر بسبب تجاوز إجهاد الأنسجة الرئيسية في الجدار لإجهاد الشد الذي تحمله مادة الجدار ويتآثر بشكل كبير بمقدار الأحمال الشاقولية المتزامنة ومقاومة مادة الجدار إضافة لتأثيرها بنسبة الواجهة (Aspect Ratio)، حيث أن كلما نقصت هذه النسبة زادت مساهمة تشوهات القص في حدوث الانهيار، وبين النقطة القوية لحالة الانهيار (Vaughan, 2010). ويمكن أن يحصل هذا الانهيار على القص قطرًا بشكل مترابط بين النقطة القوية (Vaughan, 2010). في السطح الفاصل بين المونة الإسمنتية ووحدات البلوك وتشوهات القص في حدوث الانهيار، ويبين الشكل (2-13-c) توضيح النقطة القوية في الشكل (Vaughan, 2010). أما في حال كون مقاومة وحدات البلوك أضعف من مقاومة المادة الإسمنتية عندما تكون نسب ستة القاطعة قطرية، أو في حال كون نسب ستة القاطعات أضعف من مقاومة المادة الإسمنتية عندما تكون نسب ستة القاطعات قطرية.
بشكل مستمر في مادة وحدات البلوك، وبين الشكلين (2-14) (a)
(Elgwady et al., 2002).

النمط الثالث هو جزء من انهيار القص الانزلاقي (Sliding Shear Failure) والذي يحدث في حالة تعرض الجدار لأحمال شاقولة صغيرة، أو في حالة كان معامل الاحتكاك بين وحدات البلوك والمؤونة صغيرة، كون مقاومة المونة بين وحدات البلوك صغرى مثلاً، وهذا ما يؤدي إلى حدوث تشظيات أفقياً غالباً ما تكون قريبة من قاعدة الجدار. ويمكن التعرف على شكل هذا النمط من خلال الشكلين (2-13) و (2-14) (c)على شكل النمط من خلال الشكلين (2-13) و (2-14) (c).

النمط الثالث هو جزء من انهيار القص الانزلاقي (Sliding Shear Failure) والذي يحدث في حالة تعرض الجدار لأحمال شاقولة صغيرة، أو في حالة كان معامل الاحتكاك بين وحدات البلوك والمؤونة صغيرة، كون مقاومة المونة بين وحدات البلوك صغرى مثلاً، وهذا ما يؤدي إلى حدوث تشظيات أفقياً غالباً ما تكون قريبة من قاعدة الجدار. ويمكن التعرف على شكل هذا النمط من خلال الشكلين (2-13) و (2-14) (c).

النمط الثالث هو جزء من انهيار القص الانزلاقي (Sliding Shear Failure) والذي يحدث في حالة تعرض الجدار لأحمال شاقولة صغيرة، أو في حالة كان معامل الاحتكاك بين وحدات البلوك والمؤونة صغيرة، كون مقاومة المونة بين وحدات البلوك صغرى مثلاً، وهذا ما يؤدي إلى حدوث تشظيات أفقياً غالباً ما تكون قريبة من قاعدة الجدار. ويمكن التعرف على شكل هذا النمط من خلال الشكلين (2-13) و (2-14) (c).

1.1 الإطارات البيتونية المسلحة

تعتبر الجمل الإطارية من الجمل الإنشائية الهامة المقاومة للأحمال الجانبية وخاصة الزلزالية منها لما تتمتع به من مقاومة وطاقة عالية، ومنع الأحمال الجانبية في مستوى يجب أن تدعم هذه الجمل بشكل أساسي على مقاومة عوالم الانعطاف الناتجة في عقد الإطارات، أي نقاط اتصال الجوائز والأعمدة. تم مؤخراً وضع الكثير من الاشتراطات والمعادلات الخاصة لتصميم الإطارات لمقاومة الأحمال الجانبية وخاصة الزلزالية منها. هذا التطور في التصميم يستدعي مراجعة المباني التي تم إنشاؤها قبل صدور التوصيات الحديثة، ومحاولة رفع كفاءتها لتجاري ما تم الحصول عليه من توصيات وتحسين بذلك سلامة هذه الأبنية واستمراريتها، والبحث الحالي يعد جزءاً من هذه الجهود كونه يسعى لرفع كفاءة المباني القائمة باستخدام التقنيات الحديثة، ولهذا تم الاكتفاء بالطرق للإطارات البيتونية المصممة قبل صدور التوصيات الحديثة.

ولم يتم التعقم في الاشتراطات والترتيبات المتبعة عند استخدام الجمل الزلزالية.

تتألف الإطارات البيتونية بشكل أساسي من الأعمدة والجوائز المرتبطة إلى بعضها بعد العمل هذه الجمل معاً لمقاومة الأحمال المختلفة، ويتثار بشكل كبير بأبعاد العنصر المختلفة وخصائص المواد المكونة لها والتاثير المتبادل بين أداء هذه المواد. تتكون الإطارات البيتونية من مادة أساسيت هما البيتون وفولاذ التسليح اللتان ترتبطان بدورها معاً لأشكال العمل المشتركة لمادة البيتون المسلح، سيتم النظر فيهما إلى خواص كل من البيتون وفولاذ التسليح وتسلط الضوء على كيفية عملهما المشترك لاتخاذ الاستفادة منها لاحقاً في نموذجة مادة البيتون المسلح.

الخصائص الميكانيكية للبيتون

1.3.2

Concrete Mechanical Properties

إن العديد من الدراسات جرت على مادة البيتون وقامت بوضع تصوير واضح عن تصرف هذه المادة (Composite Materials) تحت تأثير الإجهادات والتتشوهات المختلفة. وتعتبر مادة البيتون من المواد غير المتجانسة.

الإطارات البيتونية المسلحة

Reinforced Concrete Frames

1.1 الإطارات البيتونية المسلحة

تعتبر الجمل الإطارية من الجمل الإنشائية الهامة المقاومة للأحمال الجانبية وخاصة الزلزالية منها لما تتمتع به من مقاومة وطاقة عالية، ومنع الأحمال الجانبية في مستوى يجب أن تدعم هذه الجمل بشكل أساسي على مقاومة عوالم الانعطاف الناتجة في عقد الإطارات، أي نقاط اتصال الجوائز والأعمدة. تم مؤخراً وضع الكثير من الاشتراطات والمعادلات الخاصة لتصميم الإطارات لمقاومة الأحمال الجانبية وخاصة الزلزالية منها. هذا التطور في التصميم يستدعي مراجعة المباني التي تم إنشاؤها قبل صدور التوصيات الحديثة، ومحاولة رفع كفاءتها لتجاري ما تم الحصول عليه من توصيات وتحسين بذلك سلامة هذه الأبنية واستمراريتها، والبحث الحالي يعد جزءاً من هذه الجهود كونه يسعى لرفع كفاءة المباني القائمة باستخدام التقنيات الحديثة، ولهذا تم الاكتفاء بالطرق للإطارات البيتونية المصممة قبل صدور التوصيات الحديثة.

ولم يتم التعقم في الاشتراطات والترتيبات المتبعة عند استخدام الجمل الزلزالية.

تتألف الإطارات البيتونية بشكل أساسي من الأعمدة والجوائز المرتبطة إلى بعضها بعد العمل هذه الجمل معاً لمقاومة الأحمال المختلفة، ويتثار بشكل كبير بأبعاد العنصر المختلفة وخصائص المواد المكونة لها والتاثير المتبادل بين أداء هذه المواد. تتكون الإطارات البيتونية من مادة أساسيت هما البيتون وفولاذ التسليح اللتان ترتبطان بدورها معاً لأشكال العمل المشتركة لمادة البيتون المسلح، سيتم النظر فيهما إلى خواص كل من البيتون وفولاذ التسليح وتسلط الضوء على كيفية عملهما المشترك لاتخاذ الاستفادة منها لاحقاً في نموذجة مادة البيتون المسلح.

الخصائص الميكانيكية للبيتون

1.3.2

Concrete Mechanical Properties

إن العديد من الدراسات جرت على مادة البيتون وقامت بوضع تصوير واضح عن تصرف هذه المادة (Composite Materials) تحت تأثير الإجهادات والتتشوهات المختلفة. وتعتبر مادة البيتون من المواد غير المتجانسة.

الإطارات البيتونية المسلحة

Reinforced Concrete Frames
المراجعة البحثية

المصنوعة من خليط من الحصويات ومادة الأسمنت الرابطة، وتتميز بشكل عام بمقاومة جيدة على الضغط (Compressive Strength)، ويعتمد انهايار المادة (Cracking) في حالة الانهيار على الشد، وبالتالي هو تحطم المادة (Crushing) في حالة الانهيار على الضغط (Obaidat, 2011). وسيتم فيما يلي تفصيل بعض خواص البيتون الهامة لموضوع البحث الحالي.

1.1.3.2 مقاومة البيتون على الضغط (Concrete Compressive Strength)

يصنف البيتون عادة حسب المقاومة المميزة الإسطوانية على الضغط الأحادي عند عمر 28 يوم، وتزود الكثير من المراجع علاقة الإجهاد-التشوه للبيتون تحت تأثير الضغط الأحادي (Uni-axial) المخصوص للبيتون العادي (Normal weight concrete) الموضح في المواصفة الأوربية BS EN 1992-1-1 (المخصص للبيتون العادي Normal weight concrete) بالشكل (2-15)، حيث يكون تصرف البيتون مرناً خطيًا حتى الوصول إلى إجهاد مساو لـ 40% من الإجهاد الأعظمي حيث تبدأ التشققات الدقيقة بالتشكل، ثم تأخذ العلاقة شكلاً لا مرناً (Inelastic) حتى الوصول إلى الإجهاد الأعظمي الذي يتحملي المادة في حالة الانهيار الكامل للمادة.

تتعدد المواصفة المعتمدة قيم التشوه النسبية بالنسبة للبيتون ذي المقاومة على الضغط أقل من 50MPa، والمناطق في التشوه النسبية بالمقاومة الإجهاد الأعظمي بالعلاقة (2-4) في حين تحدد قيمة التشوه النسبية الأعظمي بالعلاقة (2-5) عند الانهيار.

\[e_{c1} = 0.7 f_{cm}^{0.31} \leq 2.8 \] (2-4)

\[f_{cm} = f_{ck} + 8 \] (2-5)

حيث:

- \(f_{ck} \) المقاومة المميزة لمادة البيتون على الضغط عند عمر 28 يوم مقدرة بالـ N/mm².
- \(f_{cm} \) المقاومة المتوسطة على الضغط بعد 28 يوم بشروط الحفظ النظامية مقدرة بالـ N/mm².

وتحدد علاقة الإجهاد-التشوه المبينة في الشكل (2-15) بمحلل من الدقة الثانية مبين في العلاقة (2-6) لقيم التشوه النسبية ضمن المجال:}

\[|e_c| < |e_{cu}| < 0 \]
02
\[\frac{\sigma_c}{f_{cm}} = \frac{k\eta - \eta^2}{1 + (k - 2)\eta} \]
(6-2)

\[\eta = \frac{\varepsilon_c}{\varepsilon_1} \]
(7-2)

\[k = 1.05 \cdot E_{cm} \cdot |\varepsilon_1|/f_{cm} \]
(8-2)

حيث:
- معامل مرونة البيتون مقدر بالـ \(E_{cm} \).
- \(E_{cm} \) عامل مرونة البeton في N/mm².

تحدد المواصفة الأوربية BS EN 1992-1-1 معامل بواسون بقيمة 0.2، فيما تعتمد معامل مرونة البيتون في المبيان في الشكل (2-15) باستخدام الخط القاعدي الأوساطي بين بناء الإحداثيات والنقاطة على منحنى الإجهاد-التنشؤ الموافق لإجهاد مساو لـ 0.4\(f_{cm} \).

\[E_{cm} = 22000 \left[\frac{f_{cm}}{10} \right]^{0.3} \quad (MPa) \]
(9-2)

:**مقاومة البيتون على الشد:**

تعتبر مقاومة البيتون على الشد أقل إذا ما قورنت بتحمله على الضغط، حيث يؤدي تعرض البيتون إلى إجادات شديدة إلى ظهور تشققات دقيقة (micro-cracks) في ظل التشوهات والمونة الإسمنتية. ما تثبت هذه التشققات أن تنتهي مع زيادة الإجادات الشاذة المطبقة وتتصل مع بعضها مما يؤدي إلى انخفاض قياس المادة وتستمر هذه العملية حتى الانهيار التام لمجمل المادة.

رغم كون الإجادات والتشوهات الشاذة التي تحملها البيتون صغيرة نسبيًا، إلا أنه يجب أخذ تصرف البيتون في هذه الحالة بعين الاعتبار بتحليل تصرف المادة بشكل دق. تعطي المراجع أشكالًا متقاربة لتصارف البيتون على الشد حيث يبدى البيتون تصرفًا على الشد مرنا خطيًا بميل مساو لمعامل مرونة البيتون حتى الوصول إلى إجهاد الشد الأعظمي الذي تحمله المادة حيث تبدأ التشققات الدقيقة بالظهور وتستوي هذه المرحلة مرحلة التنشؤ التشوهية (Strain Hardening) ومن ثم تبدأ مرحلة التراجع حيث يتراوح الإجادات الشاذة التي تحملها المادة مع زيادة التشوهات النسبية حتى الوصول إلى الانهيار التام (Failure) وتعرف هذه المرحلة بمرحلة اللونة التشوهية (Strain softening).

(Johnson, 2006).
2.3.2 الخواص الميكانيكية لفولاذ التسليح

Reinforcement Steel Mechanical Properties

تمر مادة فولاذ التسليح بمراحل متعددة قبل الانهيار تبدو واضحة من خلال منحنى الإجهاد-التشوه كما في الشكل (2-17)، الذي يبين شكلاً نموذجياً لمنحنى الإجهاد-التشوه لفولاذ التسليح المطاطوسق الشكل والمتواضع المتوسط، حيث تبدأ مادة الفولاذ بالتصرف بشكل خطئي مرن حتى الوصول إلى حد المرونة (Elastic Limit) بعدها تبدأ المادة بالتشوه اللدن (Strain Hardening) وتدخل مرحلة المطاطوسق (Yielding) والتي تميز بازدادية التشوه مع زيادة منخفضة في قيمة الإجهاد وهي القيمة التي تُعتمد عادة في التصميم، في نهاية هذه المرحلة تبدأ المادة اكتساب قساوة جديدة إلى زيادة الإجهاد الذي تتحمله المادة حتى الوصول إلى الإجهاد الحدي (Ultimate stress)، حتى هذه المرحلة يكون تشوه المادة مزالاً منتظماً (Uniform Deformation)، لليُبدأ بعدها التشوه غير المنتظم للعينة حيث تتشكل أعقاب في النقطة الضيقة (Necking) تنتهي بانهيار المادة بشكل كامل (Obaidat, 2011).

وبعدين الالتحاق بالمادة (Strain Hardening) يمكن في شكل (2-17) منحنى نموذجي لمنحنى الإجهاد-التشوه لفولاذ التسليح (Obaidat, 2011).
التماسك بين البيتون وفولاذ التسليح

3.3.2 Concrete-Reinforcement Steel Bond Slip

للحصول على العمل المشترك بين البيتون والفولاذ لابد من تأميم التماسك اللازم بين المادتين والذي يؤدي لنقل الإجهادات والتشوهات بين المادتين. يتعلق التماسك بعوامل متعددة منها مقاومة كل من البيتون وفولاذ التسليح بالإضافة إلى سماكة طبقة التغطية لفولاذ التسليح وطبيعة سطح قضبان التسليح وطرفيها وتباعدهما، ويعتبر سلوك التماسك محصلة ثلاثة ميكانيكيات هي الالتصاق الكيميائي (chemical adhesion)، والاحتكاك (Friction) والالتصاق الميكانيكي (Mechanical Interlocking) في الفولاذ والنتوءات (ribs) على سطح القضبان الفولاذية (Lundgren, 1999).

بينت الدراسات (CEB-FIP, 2010) أن التماسك دوراً أساسياً في عمل البيتون المسلح كمادة مختلطة وتصرفه تحت تأثير الأحمال المختلفة، فبمجرد مرحلة حد الاستقرار (Serviceability Limit State) في عرض الشقوق المتزامنة وتبعاتها وتصب الشد (Tension Stiffening، ليفن فولاذ التسليح في المنطقة حول فولاذ التسليح، Anchorage) بينما يكون في مرحلة الحد الأقصى (Ultimate Limit State) مسؤولاً عن تأمين عمل أطرال الإرساء (Rotation) في فولاذ التسليح بالإضافة إلى أثره الكبير في دوران مقاطع العنصر (length، والترابطات (Lap Splices).

عند تشكيل الشقوق ماتزال الشكولة (Capacity Plastic Hinges) عند تشكل المفصل الدلني (Capacity flexural stiffness) لنفهم أعمق لطبيعة التماسك بين البيتون وفولاذ التسليح سيتم أخذ جزء من البيتون المسلح معرض للانعطاف (الشكل 2-19)، إن التصرف اللاخطي للبيتون ينتج من التشوهات التي تنشأ بشكل متاحق في المقطع البيتونى عند تجاوز الإجهادات الشاذة للقيام التي يتحملها البيتون. يمكن وصف كل شق بأنه انهيار موضعي (Local Failure) في نقطة تشكل الشق، يتحمل فولاذ التسليح كامل الإجهادات الشاذة، بينما في المنطقة المشكلة بين شقين متالين يبقى البيتون قادرًا على تحمل جزء من إجهادات الشاذ مع فولاذ التسليح بما يمكن في رفع قوة الانعطاف (flexural stiffness) في هذه المنطقة وهذا التغيير هو الذي يرسم توزع الإجهادات في كل من البيتون وفولاذ التسليح بين الشقوق (الشكل 2-19). مع تطور الحالة تتشارك مزيد من الشقوق بين الشقين الأولي وتسنم العملية حتى تعجز قوى التماسك بين الشقوق الجديدة عن نقل قوة الشذ البيتون وفولاذ التسليح.

نتيجة لتشكل الشقوق تصبح الانتقالات النسبية في كل من البيتون وفولاذ التسليح غير متساوية ما يؤدي إلى حصول انتقالات نسبية بين المادتين وهو ما يعرف بالانزلاق (Slip)، مما يعني أن فرضية التماسك الكامل (Perfect Bond) بين المادتين لا تعبر عن العمل الحقيقي في البيتون المتشقق (Kwak and Filippou, 1990).
المراجعة البحثية

قامت العديد من الأبحاث بإيجاد العلاقة بين إجهاد التماسك-الانزلاق (Bond stress-Slip relation) والتي أعطت فهماً أعمق للعمل المشترك بين البيتون وفولاذ التسليح. عادةً ما يتم استخدام علاقة إجهاد التماسك-الانزلاق لتمثيل العلاقة العضلية عند نمذجة مادة البيتون المملحة، وقد تم خلال الدراسة الحالية استخدام النموذج الموجود في المواصفة الأوربية (CEB-FIP, 2010) والموافق مع المواصفة الأوربية الخاصة بالبيتون (BS EN 1992-1-1) التي تم اعتمادها سابقاً لتمثيل تصرف مادي البيتون والفولاذ.

للمقطع البيتوني المسلح المعرض للانعطاف (Kwak and Filippou, 1990) تأثير الشقوق في عمل البيتون المسلحة حيث تكون العلاقة لاحظية في البداية حتى الوصول إلى إجهاد التماسك الأعظمي

\[\tau_{max} \]

عند الانزلاق مواقف

\[S_1 \]

بعدها يثبت إجهاد التماسك عند القمة الأعظمية \n
\[\tau_1 \]

حتى وصول الانزلاق الى القيمة \n
\[S_2 \]

عندها يبدأ إجهاد التماسك بالتناقص خطياً حتى الوصول إلى القيمة \n
\[\tau_3 \]

انزلاق مواقف

\[S_3 \]

مسار للمسافة الصافية بين النهرين وفولاذ التسليح. للبيتون المملحة ذي قيم التماسك ضعيفة، فإن قيم المتغيرات السابقة يمكن تحديدها من خلال الجداول الخاصة في المواصفة المعتمدة (CEB-FIP, 2010) حيث تعطى المتغيرات المسالحة من خلال الجداول الخاصة في المواصفة المعتمدة (CEB-FIP, 2010)

\[S_2 = 3.6\ mm \] و \n
\[S_1 = 1.8\ mm \]

ولاستنتاج منحنى إجهاد التماسك - الانزلاق الممغن في النمط (2-20) يمكن استخدام العلاقات من (2-12) إلى (2-14) باعتبار قيمة المعامل

\[\alpha \]

مساوية ل 0.4.

الشكل (2-19) تأثير الشقوق في عمل البيتون المملحة
الإطارات البيتونية المملوءة وحدات البلوك الإسمنتية (URCM in-filled RC Frames)

4.2

يتبع استخدام جدران ووحدات البلوك تلبية المتطلبات الوظيفية للمبنى دون التطرق إلى دورها في تحمل الأحمال التي يعرض لها المبنى سواء الشاقولية أو الأفقية منها، وعادة ما يتم ملء الاطارات البيتونية بالجدران بشكل كلي أو جزئي دون أن يتم أخذ تأثيرها في تغيير سلوك الجملة الإنشائية الجديدة، مما هو عليه في الدراسة التصميمية. سيتم التطرق فيما يلي إلى تأثير هذه الجدران في تغيير السلوك الإطاري للمنشأ بشيء من التفصيل.

الشكل (20) منحنى التماسك - الانزلاق في البيتون المسلح (2010).

الإطارات البيتونية المملوءة وحدات البلوك الإسمنتية

ترمز $	au_o$ إلى $	au_{max} (s/s_1)^{\alpha}$ للعلاقة (11-2) لـ $0 \leq s \leq s_1$.

ترمز $	au_o = \tau_{max}$ للعلاقة (12-2) لـ $s_1 \leq s$.

ترمز $	au_o = \tau_{max} - f_f (s/s_2)/(s_3 - s_2)$ للعلاقة (13-2) لـ $s_2 \leq s \leq s_3$.

ترمز $	au_o = f_f$ للعلاقة (14-2) لـ $s_3 < s$.

ترمز $	au_{max} = 1.25 \sqrt{f'_c}$ للعلاقة (15-2).

ترمز $f_f = 0.04 \tau_{max}$ للعلاقة (16-2).

حيث:

$	au_{max}$ إجهاد التماسك الأعظمي مقدرا بالـ N/mm^2.

τ_f إجهاد التماسك عند الانهيار مقدرا بالـ N/mm^2.

Maximum bond stress, in N/mm2
Bond stress at Failure, in N/mm2

الإطارات البيتونية المملوءة وحدات البلوك الإسمنتية (URCM in-filled RC Frames)

4.2

يتبع استخدام جدران ووحدات البلوك تلبية المتطلبات الوظيفية للمبنى دون التطرق إلى دورها في تحمل الأحمال التي يعرض لها المبنى سواء الشاقولية أو الأفقية منها، وعادة ما يتم ملء الاطارات البيتونية بالجدران بشكل كلي أو جزئي دون أن يتم أخذ تأثيرها في تغيير سلوك الجملة الإنشائية الجديدة، مما هو عليه في الدراسة التصميمية. سيتم التطرق فيما يلي إلى تأثير هذه الجدران في تغيير السلوك الإطاري للمنشأ بشيء من التفصيل.
1.1.1 سلوك الإطارات البيتونية المسلحة المملوءة بجدران وحدات البلوك الإسمنتية

Behavior of URCM in-filled RC Frames

تقوم جدران البلوك الممتلئة بالإطارات البيتونية المسلحة بتغيير السلوك الإنشائي لهذه الإطارات عما سبق ذكره في الفقرة (2-3) وذلك عند تعرضها للأعمال الجبلي في مستوياتها، حيث يتحول عملها إلى ما يشبه الجائز الشبكي (Truss) نتيجة لقوى الضغط القطرية التي تنشأ في جدار وحدات البلوك وقوى الضغط والقص التي تنشأ في نقاط التماس بين الجدران والإطار البيتونى، والتي تؤدي إلى زيادة القوى المحورية في عنصر الإطار. بين الشكل (2-1) تغير سلوك الإطار عند إضافة تأثير الجدران تحت تأثير الأعمال الجبلي المتصلة في مستوي الإطار حيث يلاحظ سيطرة القوى المحورية على عمل الجملة الجديدة سواء في الإطار البيتونى أو في جدار وحدات البلوك الإسمنتية وهو السبب وراء اعتماد تسمية العمل الشبكي.

إن وجود الجدران الممتلئة يؤدي إلى رفع قساوة الإطارات بشكل كبير، مما يفيد في رفع كفاءتها لمقاومة الأحمال الجانبية في مستوى ويسامح في رفع مطاطة الجملة ككل، يمكن استمرار ذلك في المناطق الزنانية المتصلة الشدة ما يعني قيمة مضافة لهذه الجدران ووفرة اقتصادياً كبيراً عند تأهيل المباني القائمة لمقاومة الأحمال الزنانية، إلا أنه رغم ذلك يجب التوقف ملياً عند هذا التغيير حيث يؤدي إلى عمل الإطارات بشكل مبكر تماماً مما تم خلال عملية تصميم الجملة الإطارية دون أخذ تأثير وجود الجدران بعين الاعتبار، حيث تتشارك العديد من ميكانيزمات الانهيار الجديدة التي لا يتم عادة أخذها بعين الاعتبار عند التصميم وقد تم التطرق إلى بعضها في الفقرة (1.2) (Murty and Jain, 2000).

(الشكل(2-1) العمل الشبكي للإطار نتيجة وجود الجدار (2000).

أنماط انهيار الإطارات البيتونية المسلحة المملوءة بجدران وحدات البلوك الإسمنتية

Failure modes of URCM in-filled RC Frames

إن التأثر المتداخل بين الإطارات البيتونية وجدار وحدات البلوك الإسمنتية هو أمر معقد ويخصع للكثير من العوامل وهذا ما يجعل من الصعب التحكم بشكل دقيق بطريقة تصفح هذه الجملة. حيث يتغير نمط انعكاس الحملة الجديدة بتغير المقاومة النسبية لكل من الإطار والجدار، بينما تعتمد مطاطة الجملة الجديدة على خواص المواد المختلفة المكونة للجدار وتفاصيل تصفح عقد الإطار وطريقة توزيع الجدران ضمن الجملة الإطارية (2000).

(الشكل(2-2) موضح في الشكل (2-22) يمكن تصنيف أنماط الانهيار المختلفة بخمسة أنماط أساسية (Sattar, 2013) يمكن أن تحصل كل على حدة أو أن تحصل تراكب بينها.
يتمثل النمط الأول بالشكل (2-22-a) تحطم زوايا الجدار (Corner Crushing Failure, CC) تحطم زوايا الجدار. هذا النمط عندما تكون مقاومة الإطار مرتفعة في حين تكون مقاومة الجدار ضعيفة.

يسمي النمط الثاني للانهيار والموسم بالشكل (2-22-b) انهيار القص الانزلاقى (Sliding Shear Failure, SS) وترافق مع وجود مونة إسمنتية ضعيفة في جدار ووحدات البلوك الإسمنتية بوجود إطار بيتوني ذي مقاومة مرتفعة.

ويمثل النمط الثالث الانهيار القطري على الضغط (Diagonal Compression Failure, DC) ويحصل في الجدران ذات النحافة المنخفضة كما في الشكل (2-22-c).

يحدث النمط الرابع في حالة الإطار البيطوني ذي المقاومة المنخفضة نسبةً بالنسبة لمقاومة الجدار فيحصل انهيار شق قطري (Diagonal Cracking Failure, DK) بشكل شكل (2-22-d). ويزيد عادةً من نوعين

وبعد النمط الخامس والأخير يعرف بالانهيار الانعطاف لعقد الإطار (Frame Bending Failure, FF) يتزامن وجود مونة إسمنتية ضعيفة في حالة الإطار البيطوني وجدار معًا وهو موضح بالشكل (2-22-e).

(Sattar, 2013) أنماط انكماش الإطارية والملاكية بواسطة نماذج الوجود البلوك الإسمنتية (2013).
البوليميرات المسلحة بالألقاب

Fiber Reinforced Polymer (FRP)

مقامة

1.1

البوليميرات المسلحة بالألياف (Fiber Reinforced Polymer, FRP)

تعتبر البوليميرات المسلحة بالألياف (Composite Material) من المواد المستعملة حديثاً في عمليات إعادة تأهيل المنشآت، وهي مادة مختلطة مرتبطة فيما بينها بوسط لاصق (Strength Fiber) بضمان نقل القوى بين الألياف وحمايتها من العوامل المحيطة، فيما تقوم الألياف بتحمل القوى وتأمين القيمة اللازمة للمادة المختلطة (Batikha, 2008).

1.1.1

مقدمة

تعتبر البوليميرات المسلحة بالألياف (Fiber Reinforced Polymer, FRP) مادة مختلطة (Composite Material) تتكون من ألياف عالية المقاومة (High Strength Fiber) مرتبطة فيما بينها بوسط لاصق (Resin Matrix)، في حين يقوم الوسط اللاصق بضمان نقل القوى بين الألياف وحمايتها من العوامل المحيطة، فيما تقوم الألياف بتحمل القوى وتأمين القيمة اللازمة للمادة المختلطة. (Batikha, 2008).

تختلف خواص مادة FRP باختلاف خواص المواد الداخلة في تركيبها وتأثر كثيراً بنوع الألياف المستخدمة، وتتنوع بأشكال مختلفة كالمقاطع (Profiles) والقصابان (Bars) والشرائح (Laminates)، وتصنف مادة FRP وتصنف نوع مادة الألياف المستخدمة إلى ثلاثة أنواع: النوع الأول يسمى FRP، النوع الثاني يسمى نوع الزجاج (Glass Fiber)، بينما يسمى النوع الثاني AFRP، النوع الثالث يسمى الـ CFPR (Carbon Fiber), في حين يسمى النوع الذي يستخدم فيه الألياف الكربونية (Uni-directional CFRP Laminates) وقد تستخدم في الدراسة الحالية على استخدام الشرائح المصنوعة من البوليميرات المسلحة بالألقاب الكربونية (Ahdieh الاتجاه)—أحادية الاتجاه (Ahdieh الاتجاه (Batikha, 2008))، وهي من الأنواع الشائعة الاستخدام في تقنية جدران وحدات البلوك المختلطة وبين الشكل (2-23) رسمًا توضيحياً للمادة المذكورة (Obaidat, 2011).

الخواص الميكانيكية لشرائح الـ FRP أحادية الاتجاه

Mechanical Properties of Uni-directional FRP Laminates

باعتبار حالة الإجهاد المستوية (Planar Stress State)، تعتبر شرائح FRP أحادية الاتجاه بأنها مواد مغزيرة في الاتجاه (Orthotropic Material)، حيث يكون عمل المادة بشكل أساسي في اتجاه عمل الألياف فيما يؤدي اختلاف خواص الألياف والوسط الرابط إلى جعل المادة ككل تعمل بشكل مختلف في الاتجاهين المعاكسين لاتجاه الألياف (Batikha, 2008). وبين الجدول (2-6) بعض خواص الألياف المكونة للـ FRP تتميز مادة FRP بسلوكها المرنة الخطي حتى الانهيار، إضافة إلى مقاومتها العالية على التآكلة اللونية مع الفولاذ لاتجاه الألياف (Planar Stress State)، حيث يكون عمل المادة بشكل أساسي في اتجاه عمل الألياف فيما يؤدي اختلاف خواص الألياف والوسط الرابط إلى جعل المادة ككل تعمل بشكل مختلف في الاتجاهين المعاكسين لاتجاه الألياف (Batikha, 2008). وبين الجدول (2-6) بعض خواص الألياف المكونة للـ FRP تتميز مادة FRP بسلوكها المرنة الخطي حتى الانهيار، إضافة إلى مقاومتها العالية على التآكلة اللونية مع الفولاذ لاتجاه الألياف (Planar Stress State)، حيث يكون عمل المادة بشكل أساسي في اتجاه عمل الألياف فيما يؤدي اختلاف خواص الألياف والوسط الرابط إلى جعل المادة ككل تعمل بشكل مختلف في الاتجاهين المعاكسين Laminates, وCES-FIP, 2010) (Carbon Fiber) (Fiber, 2010) (Carbon Fiber) (Obaidat, 2011).
1.1.1 انهيار التماسك بين البيتون وشرائح الـ FRP

تستخدم العديد من المواد اللاصقة لتثبيت شرائح الـ FRP إلى سطوح المواد الأخرى مثل البيتون. أكثر المواد اللاصقة استخدامًا هي الأكريليك (Acrylic) والإيبوكسي (Epoxy) والبيوريتان (Urethane)، وينتظّر عن استخدام الإيبوكسي مقاومة تماسك كبيرة ومقاومة كبيرة للحرارة، في حين أن استخدام الأكريليك يعطي مقاومة متوسطة للحرارة، وفيما يلي بعض الخواص الملاحظة للإيبوكسي المستخدمة في تصنيع وتثبيت شرائح الـ FRP (Batikha, 2008).

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Tensile strength (MPa)</th>
<th>Modulus of elasticity (GPa)</th>
<th>Strain to failure (%)</th>
<th>Density (t/m³)</th>
<th>Coefficient of thermal expansion (10^{-6}/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon: High strength</td>
<td>4300-4900</td>
<td>230-240</td>
<td>1.9-2.1</td>
<td>1.8</td>
<td>-0.38</td>
</tr>
<tr>
<td>Carbon: High modulus</td>
<td>2740-5490</td>
<td>294-329</td>
<td>0.7-1.9</td>
<td>1.78-1.81</td>
<td>-0.83</td>
</tr>
<tr>
<td>Carbon: Ultra high modulus</td>
<td>2600-4020</td>
<td>540-640</td>
<td>0.4-0.8</td>
<td>1.91-2.12</td>
<td>-1.1</td>
</tr>
<tr>
<td>Aramid: High strength and high modulus</td>
<td>3200-3600</td>
<td>124-130</td>
<td>2.4</td>
<td>1.44</td>
<td>2.1</td>
</tr>
<tr>
<td>Glass</td>
<td>2400-3500</td>
<td>70-85</td>
<td>3.5-4.7</td>
<td>2.6</td>
<td>4.9</td>
</tr>
</tbody>
</table>

ينتج عن استخدام الإيبوكسي مقاومة تماسك كبيرة ومقاومة كبيرة للحرارة، وفيما يلي بعض الخواص الملاحظة للإيبوكسي المستخدمة في تصنيع وتثبيت شرائح الـ FRP (Batikha, 2008).

إن استخدام شرائح الـ FRP في رفع كفاءة النماذج الإنشائية المختلفة يرتبط بشكل كبير بفعالية التثبيت المستخدم (Interface Surfaces) وذلك لأسباب متعددة، وللتحقيق من النماذج الإنشائية اللازمة لاستيعاب الإنشاءات المستخدمة في التحلل البنيوي من أية نتوءات أو تموجات أو مواد تؤدي إلى اهتزازات التماسك (Obaidat, 2011).

إن انهيار التماسك يؤدي إلى انهيار المادة الأصلية (25-30%) بحيث يمكن أن تنهار المادة نفسها في حصول الانهيار في...
مادة البيتون أو في المادة اللاصقة أو في مادة الـ FRP، أو أن يحصل الانهيار في سطوح التماس المختلفة بين المواد (Obaidat, 2011).

الجدول (7-2) بعض خواص المواد اللاصقة المستخدمة مع الـ FRP (Batikha, 2008)

<table>
<thead>
<tr>
<th>مادة</th>
<th>قوة التواء (MPa)</th>
<th>مودulus للصدا (GPa)</th>
<th>نسبة الانهياء (%)</th>
<th>密度 (t/m3)</th>
<th>نسبة Poisson’s</th>
<th>Coeficient للتوسع الحراري (10^6/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>أوبوكس</td>
<td>60-85</td>
<td>2.6-3.8</td>
<td>1.5-8</td>
<td>1.11-1.2</td>
<td>0.3-0.4</td>
<td>30-70</td>
</tr>
<tr>
<td>بوليستيرن</td>
<td>50-75</td>
<td>3.1-4.6</td>
<td>1-2.5</td>
<td>1.11-1.25</td>
<td>0.35-0.38</td>
<td>30-70</td>
</tr>
<tr>
<td>بنزيلينيك</td>
<td>60-80</td>
<td>3-4</td>
<td>1-1.8</td>
<td>1-1.25</td>
<td>Not Available</td>
<td>80</td>
</tr>
<tr>
<td>بوليوريثان</td>
<td>15-25</td>
<td>0.5</td>
<td>10</td>
<td>1.15-1.2</td>
<td>0.4</td>
<td>40</td>
</tr>
</tbody>
</table>

وبالتالي كان لابد من إيجاد نموذج لمحاكاة انهيار التماسك بشكل دقيق حيث إن اعتماد التماسك النمطي (Perfect Bond) بين المادتين يؤدي إلى نتائج لا تعبر عن السلوك الصحيح للمنصهر المركب حيث يؤدي انتقال التماسك الكامل إلى قضاء أكبر للمودد العددي وتصرف مغاير للتجربة في مرحلة مابعيد الوصول إلى المقاومة العظمى (شيخ الأرض، بطيخة 2014). تم في الدراسة الحالية اعتماد النموذج الموجود في (CEB-FIP, 2010)، والذي يعتمد على معنى طاقة الانهيار وعلاقة الإجهاد-الانتقال النسبي (Fracture Energy) G_f

الشكل (2-25) أنماط انهيار التماسك بين البيتون والـ FRP (Obaidat, 2011)

$\tau_o = \tau_m \left(\frac{s}{s_m} \right)$ for $0 \leq s \leq s_m$ (17-2)

$\tau_o = \tau_m - \tau_m \left(\frac{s - s_m}{s_u - s_m} \right)$ for $s_m \leq s \leq s_u$ (18-2)

حيث:

\[\tau_m = 1.8 f_{ctm} \]

(19-2)

لحساب قيمة الانزلاق المقاوم للإجهاد الأعظمي لابد من حساب قيمة طاقة الانهيار \(G_f \) والتي تعطى في نفس المواصفة السابقة بالعلاقة (2-20):

\[G_f = 0.202 f_{ctm} \]

(20-2)

6.2 سلوك الإطارات البيتونية المسلحة المملوءة بجداران وحدات البلوك الإسمنتية المدعمة بالـ FRP

Behavior of URCM-infilled RC Frames strengthened by FRP

أثبتت الدراسات والأبحاث الجديدة التي أجريت مؤخرًا فعالية استخدام مادة الـ FRP بأشكالها وأنواعها المتعددة للقوية الجدران لمقاومة الأعمال المختلفة، فقد تناولت بعض الأبحاث رفع كفاءة الجدران لمقاومة الأعمال المعتمدة مع سطح الجدران لأغراض إنشاء الجدران خارج مستوى، فيما تعرضت أخرى لطرقية الجدران لمقاومة الأعمال الجانبية في مستوى، ولم تقتصر الدراسات والأبحاث على ذلك بل تطرقت لنقاطية الجدران لمقاومة الأعمال الخاصة كأعمال التفجيرات وغيرها، ويتم فيما بين بعض الدراسات والأبحاث المتناقفة مع موضوع الدراسة الحالية حول رفع كفاءة الجدران على الأعمال الجانبية في مستوى باستخدام الـ FRP.
1.2.1 دراسة (Erdem et al., 2006)
قام الباحثون بإجراء دراسة تجريبية على إطار بيتوني مؤلف من ثلاث فتحات وطابقين، حيث تم بناء نموذج مصغر بنسبة الثلث، وقد تم تقوية الإطار بطرقتين: الأولى كانت بإضافة جدار من البيتون السائل ضمن الفتحة الوسطية، والثانية بشكل قطري كما هو مبين بالشكل (2-7)ا.

تمت دراسة أثر إضافية كل من الجدران على سلوك الجملة الإطارية، حيث بين الشكل (2-7b) أن مساهمة الجدران التي تتمتع بمقاومة على الضغط قدرها 2.6MPa بعد تقويتها بالألياف الرطوبة قليلاً قد يصل إلى قيم قريبة من مساهمة جدران القص البيتونية التي تتمتع بمقاومة اسطوانية على الضغط مقدارها 32.2MPa فيما لو استخدمت الألياف الرطوبة لزيادة كفاءة الإطارات المعرضة للأحمال الأفقية في مستويها، وقد أدت الطريقتان إلى رفع كفاءة الإطارات خمس مرات عنها بدون تقوية إلا أن جدار القص أعطت مطاطة (Ductility) أكبر وذلك بسبب الانفصال المفاجئ لشرائح الـ FRP.

2.6.2 دراسة (Binici and Ozcebe, 2006)
أجريت هذه الدراسة التجريبية للحصول على فاعلية استخدام شرائح الـ FRP في تقوية الجدار المصنوع من الأجر والمطاط البولي الصلب، حيث تم إضافة جدار قص من البيتون السائل (الشكل 2-28)، حيث تم إضافة جدار قص من البيتون السائل يتمتع بمقاومة اسطوانية على الضغط مقدارها 2.0MPa، ومن ثم إضافة جدار مالق من الأجر والذي يتمتع بمقاومة على الضغط مقدارها 10.0MPa بعد تقويتها قطرياً بشرائح مصنوعة من ألياف الـ CFRP.

بين الشكل (2-29) تناولت الدراسة ويبدو جلياً بأن مساهمة الجدران المالمة والمطاطة بالـ FRP تصل لقيمة قريبة جداً من مساهمة جدار القص وترفع كفاءة الإطارات بنسبة تصل إلى 200%، إلا أنه لوحظ أن مطاطة الجملة في حالة جدار القص المزود أقل بسبب انهيار التماسك المفاجئ الذي يحصل في شرائح الـ FRP.

الشكل (2-7): فعالية الطرق المختلفة لزيادة قساوة الإطارات (Erdem, 2006)

الشكل (2-28): نتائج الدراسة التشريحيّة. CFRP: الإطار المقوى بجدار مصنوع من ألياف الـ FRP. S1: إطار لمملوء. S2: إطار لمملوء مدعوم بجدار بيتون مسلح. Bare Frame: إطار لمملوء بجدار قص من البيتون السائل.
البحثية

1.2.1 دراسة (Altin et al., 2008) دراسة تجريبية أجريت للتحقق من تصرف الإطارات البيتونية المملوءة بجدران مصنوعة من وحدات الآجر ومدعمة قطرياً بشرائح الـ CFRP (تحت تأثير الأحمال الدورية Cyclic Loads). النموذج هو لإطار بيتوني من فتحة واحدة وطابق واحد، وقد تم بناء عدد من النماذج المصغرة بنسبة تصغير مقدرة 1/3 مقارنة مع الأبعاد الواقعة للنموذج.

الشكل (2-30) النتائج التحليلية للحالات المدروسة في الدراسة التحريبية (2006).

(Altin et al., 2008)

3.6.2 دراسة (Binici and Ozcebe, 2006) دراسة تجريبية أجربت للتحقق من تصرف الإطارات البيتونية المملوءة بجدران مصنوعة من وحدات الأجر ودمعة قطرياً بشرائح الـ CFRP تحت تأثير الأحمال الدورية Cyclic Loads. النموذج هو لإطار بيتوني من فتحة واحدة وطابق واحد، وقد تم بناء عدد من النماذج المصغرة بنسبة تصغير مقرها 1/3 مقارنة مع الأبعاد الواقعة للنموذج.

الشكل (2-30) أبعاد وتسلل النموذج المعتمد في الدراسة حيث بلغت نسبة الواجهة للجدار Aspect Ratio القيمة 0.58. وقد تم ملء الإطار البيتونى الساحل بجدار من الأجر المتحقق (Perforated Brick) وتدعمه قطرياً بشرائح CFRP بشكل متساوي على أحد وجوه الجدار أو على الوجهين معاً. تم إنشاء الإطار البيتونى الساحل من البيتون منخفضة المقاومة ليحاكي الأبنية الموجودة في المناطق في مناطق قيد الدراسة.

الشكل (0-28) طرق التقوية المستخدمة في الدراسة التحريبية (2006).

الشكل (2-29) النتائج التحليلية للحالات المدروسة في الدراسة التحريبية (2006).

(Altin et al., 2008)

تم إنشاء الإطار البيتونى الساحل من البيتون منخفضة المقاومة ليحاكي الأبنية الموجودة في المناطق في مناطق قيد الدراسة.

(Altin et al., 2008)

تم إنشاء الإطار البيتونى الساحل من البيتون منخفضة المقاومة ليحاكي الأبنية الموجودة في المناطق في مناطق قيد الدراسة.

(Altin et al., 2008)
The full installation of (anchorage) was determined by the research (2-31) on
the addition of anchors to the concrete wall and frame. The installation was
accompanied by the use of epoxy resin. To apply the anchors, a total of
nine models were built, each with different CFRP strip widths of 400-300-200mm,
and each width had three models, with support for the inner face of the wall,
the outer face of the wall, or both. The details of the anchoring system
were shown in the figures (1-32), and the differences in the naming of
the models were given in the tables (1-8). The dimensions and properties
of the models used are given in references (Altin et al., 2008).

(Altin et al., 2008) Dimension and characteristics of the models
(Altin et al., 2008)

<table>
<thead>
<tr>
<th>Specimen no.</th>
<th>f_{ce} (MPa)</th>
<th>f_{pm} (MPa)</th>
<th>CFRP strip width (mm)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.3</td>
<td>4.0</td>
<td>Reference specimen with masonry wall</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.0</td>
<td>3.8</td>
<td>200 - 13</td>
<td>Both sides of masonry wall</td>
</tr>
<tr>
<td>3</td>
<td>16.8</td>
<td>4.2</td>
<td>300 - 20</td>
<td>wall</td>
</tr>
<tr>
<td>4</td>
<td>17.1</td>
<td>3.7</td>
<td>400 - 27</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18.2</td>
<td>3.6</td>
<td>200 - 13</td>
<td>Interior side of the masonry wall</td>
</tr>
<tr>
<td>6</td>
<td>17.8</td>
<td>4.1</td>
<td>300 - 20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>17.7</td>
<td>3.9</td>
<td>400 - 27</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17.0</td>
<td>3.8</td>
<td>200 - 13</td>
<td>Exterior side of the masonry wall</td>
</tr>
<tr>
<td>9</td>
<td>17.5</td>
<td>3.5</td>
<td>300 - 20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17.6</td>
<td>3.7</td>
<td>400 - 27</td>
<td></td>
</tr>
</tbody>
</table>

a Ratio: (width of CFRP × 100)/diagonal length of masonry infill wall.
المراجعة البحثية

(Altin et al., 2008) (CFRP)

الشكل (2-31) تفاصيل أساليب تثبيت الـ CFRP

الشكل (2-32) ترتيبات تدعيم الجدار (2008)

بين الجدول (2-9) ملخص نتائج الدراسة، حيث وجد أن تدعيم وجهي الجدار معاً أدى إلى زيادة نسبة المقاومة الجانبية للعملية المدعومة إلى مقاومة الجدار المرجع دون تدعيم، حيث تراوحت بين 2.18 و 2.61 للشرائح بعرض بين 400mm و 200mm على الترتيب. كانت فعالية التدعيم أقل عند وضع الشرائح على وجه واحد للجدار حيث تراوحت بين 1.57 و 1.85، وكانت النسب مقارنة سواء تم التدعيم للوجه الداخلي أو الوجه الخارجي كل على حدة. وهذا يثبت فعالية استخدام شرائح CFRP لتدعيم الإطارات المملوءة بالجدران، وخاصة أن هذه الطريقة لا تحتاج لإفراغ المبنى من ساكنيه ولا تسبب إعاقة حركة ساكنيه أثناء عملية التدعيم.

الجدول (2-9) ملخص نتائج الدراسة (Altin et al., 2008)

الشكل (2-33) يُظهر نتائج التدعيم للعينات 2-3-4 المدعومة بشرائح بعرض 400mm على الترتيب

على وجهي الجدار معاً، حيث بين الشكل معلمات الحواف الهيبروية لكل من الحالات 2-3-4 مع معلمات الحلقات الهيبروية للجدار المرجع دون تدعيم، ويمكن من الشكل النتائج من زيادة فعالية التدعيم مع زيادة عرض الشرائح حيث بلغت الفعالية القيم 118% على الترتيب نسبة إلى الجملة دون 400mm - 300mm - 200mm

<table>
<thead>
<tr>
<th>Specimen no.</th>
<th>Ultimate load (kN)</th>
<th>Ratioa</th>
<th>Drift ratio at ultimate load (%)</th>
<th>Initial stiffness (kN/mm)</th>
<th>Ratiob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (reference)</td>
<td>76.7</td>
<td>1.00</td>
<td>0.40</td>
<td>20.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>167.0</td>
<td>2.18</td>
<td>0.57</td>
<td>200.00</td>
<td>4.00</td>
</tr>
<tr>
<td>3</td>
<td>187.2</td>
<td>2.44</td>
<td>0.80</td>
<td>300.00</td>
<td>6.00</td>
</tr>
<tr>
<td>4</td>
<td>208.4</td>
<td>2.61</td>
<td>0.82</td>
<td>320.00</td>
<td>6.40</td>
</tr>
<tr>
<td>5</td>
<td>114.0</td>
<td>1.57</td>
<td>0.57</td>
<td>190.48</td>
<td>3.81</td>
</tr>
<tr>
<td>6</td>
<td>131.5</td>
<td>1.78</td>
<td>0.50</td>
<td>250.00</td>
<td>5.00</td>
</tr>
<tr>
<td>7</td>
<td>139.5</td>
<td>1.83</td>
<td>0.51</td>
<td>265.00</td>
<td>5.30</td>
</tr>
<tr>
<td>8</td>
<td>118.3</td>
<td>1.54</td>
<td>0.52</td>
<td>196.22</td>
<td>3.92</td>
</tr>
<tr>
<td>9</td>
<td>131.0</td>
<td>1.71</td>
<td>0.52</td>
<td>266.67</td>
<td>5.33</td>
</tr>
<tr>
<td>10</td>
<td>142.1</td>
<td>1.85</td>
<td>0.58</td>
<td>285.00</td>
<td>5.70</td>
</tr>
</tbody>
</table>

a Ratio of ultimate load of strengthened infilled frame to ultimate load of reference specimen.
b Ratio of initial stiffness of strengthened infilled frame to that of the reference specimen; initial stiffness was calculated as using first push half cycles.
تدعم. إن النسب السابقة تؤكد تأثير عرض شرائح الـ CFRP عند زيادتها من 0.13d إلى 0.27d عند شرائح بعرض 300mm ومن ثم إلى 0.40d عند شرائح بعرض 400mm.

لانتظور فعالية التدعيم بالشرائح عند زيادة المقاومة الجانبية للجملة وانما تتعارض لزيادة القص الجانبي للفولاذ،

والتي زادت بمقدار يتراوح بين 4-6 مرات مثيرة بعرض الشرائح أيضاً كما هو مبين بالجدول (2-7).

(Altin et al., 2008).

الشكل(2-33) مغلفات الحلقات الهستيرية لحالة تدعيم وجهي الجدار (2008).

(4.6.2) دراسة (Yuksel et al., 2010)

أجرت الدراسة التجريبية على إطارات بيتونية من فتحة واحدة وطابق واحد، الإطارات مملوءة بجدران مصنوعة من وحدات الآجر المفرغ ومدعمة بأشكال مختلفة بشرائح الـ CFRP، أبعاد النموذج التجريبى مصغرة بنسبة الثلث مقارنة مع الأبعاد الواقعية للنموذج، وقد تم تطبيق أحمال دورية شبيهة بالنتيجة (Quasi-static).

أنواع النموذج المستخدم في الدراسة مبينة بالشكل (2-34)، الهدف من الدراسة مقارنة سلوك الجملة المدعمة باستخدام أشكال متعددة لشحن الشرائح على الجدار مبينة بالشكل (2-35).

استخدم لإنشاء النموذج البيني محاكاة اسمية على الضغط بعد 28 يوم مقدرة بـ 19MPa. وقد بلغ حد بذلة الأرصفة للفوناذا التسليح المستخدم للتسليح الطولي 420MPa، لإنشاء الجدار تم تصميم وحدات مضخة من الأرصفة المفرغة مصممة بمقدار الثالث ومعرفة موجبة قوة الجدار تم اختبار نماذج الجدار ببناءه 500x500mm حيث بلغت مقاومة الجدار على الضغط 230GPa، 4.85MPa. تم تدعيم النماذج باستخدام شرائح الـ CFRP.

ومقاومة على السد بلغت 3900MPa، كما بلغت الاستطالة الأعظمية عند الانقطاع 1.5%.

الشكل (2-36) مغلفات الحلقات الهستيرية لكل حالة وقد أعطت نتائج الدراسة رقمياً في الجدول (2-10)، حيث يظهر أن طريقة التدعيم السماحة (Cross diamond-braced) أعطت أكبر فعالية للتدعيم مقارنة بالطرق الأخرى (Bare Frame)، حيث وصلت قيم النقص القاعدي لهذه الطريقة إلى 61.4kN مقارنة مع 61.4kN للإطار البئري البيتونى الفارغ، أي بدلاً بلغت 230% و69% على الترتيب.
أعطت الطرق الأخرى المستخدمة فعالية أقل حيث حللت الطريقة المسمى بـ (Diamond-braced frame) المرتبة الثانية ثم الطريقة (Cross-braced Frame) فيما أعطت الطلقة (off-diagonal-braced frame) أقل فعالية. حيث بلغت قيم فعالية التدعيم مقارنة مع الإطار الفارغ دون جدار القيم 211%, 149%, 123% على الترتيب، بينما بلغت قيم فعالية التدعيم مقارنة مع الإطار المملوء بجدار القيم 59%, 28%, 14% على الترتيب.

الشكل (2-34) أبعاد وتسليح النموذج (2010).

الشكل (2-35) الأشكال المختلفة للتدعم (2010).

الجدول (2-10) ملخص نتائج الدراسة (2010).

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Push (kN)</th>
<th>Pull (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare frame</td>
<td>61.4</td>
<td>–62.2</td>
</tr>
<tr>
<td>Infilled frame</td>
<td>119.9</td>
<td>–126.0</td>
</tr>
<tr>
<td>Cross-braced frame</td>
<td>153.0</td>
<td>–139.9</td>
</tr>
<tr>
<td>Diamond-braced frame</td>
<td>191.8</td>
<td>–166.2</td>
</tr>
<tr>
<td>Off-diagonal-braced frame</td>
<td>137.0</td>
<td>–138.0</td>
</tr>
<tr>
<td>Cross diamond-braced frame</td>
<td>203.0</td>
<td>172.0</td>
</tr>
</tbody>
</table>
1.2.1 دراسة (Ozkaynak et al., 2011)

قام الباحثون باجراء دراسة تجريبية لزيادة فعالية التدعيم للجمل الإطارية المملوءة بجدران باستخدام شرائح CFRP تحت تأثير الأحمال الجانبية في مستوى الثقيلة. لإنجاز الدراسة تم بناء 12 نموذجاً مصغرًا بنسبة الثلث وحد الطابق ومؤلف من فتحة واحدة بالأبعاد والتسليح المبين بالشكل (2-37)، بينما بينا الشكل (2-38) ترتيبات التجربة حيث تم تطبيق مثبتة بالشكل (2-39) في مستوى جانبي الإطار بعد أن تم تثبيت الإطار بشكل كامل عند مستوى الأساس.

تم إنجاز الدراسة على أربعة مراحل، حيث تضمنت المرحلة الأولى (الشكل 3-11a) دراسة الإطار البيتوني دون (infilled Frame) مبنية بجدار (Bare Frame) (النموذج a)، ومن ثم تم إنشاء نماذج جديدة لإطار مملوء بجدار من الأجر الفرع (النموذج b) مبين بالشكل (3-11b، c وd)، في المرحلة التالية أنجزت بناء نماذج جديدة لإطارات مملوءة وتدعمها بطريقة مختلفة (النموذج c) وكما هو مبين بالشكلين (3-11c وd-3-11d).

بلغت المقاومة الإسطوانية المتوسطة للبيتون المستخدم في بناء النماذج 19MPa، فيما بلغت قوة القص القاعدي الحدية لنموذج الإطار البيتوني دون جدار (النموذج a) 41.56kN، بينما بلغت قوة القص القاعدي الحدية لنموذج الإطار البيتوني دون جدار (النموذج b) 91.8kN. تم استخدام وحدات من الأجر الفرع بأبعاد صغيرة بنسبة الثلث لملء الإطارات البيتونية وتدعمها بالتنوع، لعبت الكتل (350x350x70mm) مكونة من الصلب، بينما وصلت المقاومة على القص 5.0MPa. وقد بلغت مقدار الإطار扶贫工作 على الضغط 0.95MPa. تم استخدام شرائح الـ CFRP بعرض 150mm، وصلت المقاومة المحدودة أحادية الإتجاه إلى 3900MPa بمساحة 0.17mm، ومعادل مرونتها 230GPa، واستطالتها الحدية عند الانهيار 1.5%.

فيما بلغت قمة قوة القص القاعدي الحدية لنموذج الإطار البيتوني دون جدار (النموذج a) 41.56kN، بينما بلغت قمة قوة القص القاعدي الحدية لنموذج الإطار البيتوني دون جدار (النموذج b) 91.8kN. ويتضح أن إضافة الجدار أدت إلى رفع قيمة القص القاعدي للجملة بنسبة 120% مقارنة مع النموذج a، وهذا ما أكد عليه أهمية أخذ أثر الجدران عين الاعتبار لرفع كفاءة الإطار الإطارية.
المراجعة البحثية

المشكل (2-37) أبعاد وتسليح الإطار البيتوني المسلح (Ozkaynak et al., 2011).

المشكل (2-38) ترتيبات التجربة (Ozkaynak et al., 2011).

المشكل (2-39) الانتقالات الدورية المطبقة (Ozkaynak et al., 2011).
الشكل (2-40) مراحل إجراء التجارب (2011).

(Ozkaynak et al., 2011).

من صفائف الحلقات الهستيريزة (نموذج b)

(الشكل 2-14) مغلفات الحلقات الهستيريزة (نموذج c)

مغلفات الحلقات الهستيريزة للنماذج الأربعة (نموذج d)

(Ozkaynak et al., 2011).
المراجعة البحثية

12

مغلف الحلقات الهستيرية للمowell c المملوء بجدار مدعم بالشرائح مبين في الشكل (2-41-c-c)، ويظهر من خلاله ارتفاع قيمة القص القاعدي الحدية كما كانت عليه في (نموذج b)، حيث بلغت 133.17kN وبالتالي أدت إلى زيادة فعالية الجملة بمقدار 45% مقارنة مع النموذج a، بينما تصل الفعالية إلى 220% مقارنة مع النموذج b. أعطت طريقة التعديم في النموذج d القيمة الأكبر للقص القاعدي الحدي مقارنة ببقية النماذج حيث بلغت 150kN وهذا يعطي أفضلية لتبع هذه الطريقة في التعديم. وبينما الشكل (2-41-d) مغلفات الحلقات الهستيرية ويظهر من خلاله فعالية النموذج الجديد والتي بلغت 63% مقارنة مع النموذج b، بينما تصل الفعالية إلى 260% مقارنة مع النموذج a.

نتيجة الفصل الثاني

Chapter 02 Conclusion

تم من خلال هذا الفصل إجراء مراجعة بحثية لمواضيع ذات صلة بالدراسة الحالية، حيث تم تضمين الخواص الميكانيكية المختلفة للمواد المشكولة للمواد المكونة للمواد مثل البيتون والفلزات والجدران المكونة من مواد إسمنتية ووحدات بلوكت إسمنتية. وتم التطرق للخواص الميكانيكية لجوائز الإطارات المتعلقة بالمواد التي تشكلها ووحدات الإطارات المحاكاة. وتم توضيح كيفية تصرف هذه الجدران وأنماط انهيارها المختلفة.

كما تم استعراض العديد من الأبحاث والدراسات السابقة التي تناولت أثر إدخال مقاومة الجدران لرفع مقاومة الإطارات البيتونية المسمولة تحت تأثير الأحمال الجانبية في مستوياتها. بالإضافة إلى فعالية استخدام شرائح الـ FRP في رفع مقاومة الأحمال الجانبية في الإطارات المصنوعة من مواد إسمنتية ووحدات بلوكت إسمنتية.

إلا أن الدراسات والأبحاث رغم تطورها لأثر تغيير خواص الخواص الميكانيكية للمواد المكونة للمواد مثل البيتون والفلزات، لم تركز على تأثيراتها على فعالية استخدام شرائح الـ FRP في رفع مقاومة دعامة الإطارات المملوءة بجدران نظراً لفظام الجماد الجديدة ومزاياها المتعددة من خفة الوزن وسهولة التنفيذ وإمكانية التنفيذ دون حاجة لإخلاء المبان وبالتالي تقليل الإزعاج للسكان القاطنين.

إذاً، من خلال هذا الفصل، يمكن القول أنه تم إجراء مراجعة بحثية لمواضيع ذات صلة بالدراسة الحالية، حيث تم تضمين الخواص الميكانيكية المختلفة للمواد المشكولة للمواد المكونة للمواد مثل البيتون والفلزات والجدران المكونة من مواد إسمنتية ووحدات بلوكت إسمنتية. وتم التطرق للخواص الميكانيكية لجوائز الإطارات المتعلقة بالمواد التي تشكلها ووحدات الإطارات المحاكاة. وتم توضيح كيفية تصرف هذه الجدران وأنماط انهيارها المختلفة.

7.2 النتيجة الفصل الثاني

تم من خلال هذا الفصل، إجراء مراجعة بحثية لمواضيع ذات صلة بالدراسة الحالية، حيث تم تضمين الخواص الميكانيكية المختلفة للمواد المشكولة للمواد المكونة للمواد مثل البيتون والفلزات والجدران المكونة من مواد إسمنتية ووحدات بلوكت إسمنتية. وتم التطرق للخواص الميكانيكية لجوائز الإطارات المتعلقة بالمواد التي تشكلها ووحدات الإطارات المحاكاة. وتم توضيح كيفية تصرف هذه الجدران وأنماط الانهيار منها المختلفة.

كما تم استعراض العديد من الأبحاث والدراسات السابقة التي تناولت أثر إدخال مقاومة الجدران لرفع مقاومة الإطارات البيتونية المسمولة تحت تأثير الأحمال الجانبية في مستوياتها. بالإضافة إلى فعالية استخدام شرائح الـ FRP في رفع مقاومة الأحمال الجانبية في الإطارات المصنوعة من مواد إسمنتية ووحدات بلوكت إسمنتية.

إلا أن الدراسات والأبحاث رغم تطورها لأثر تغيير خواص الخواص الميكانيكية للمواد المكونة للمواد مثل البيتون والفلزات، لم تركز على تأثيراتها على فعالية استخدام شرائح الـ FRP في رفع مقاومة دعامة الإطارات المملؤة بجدران نظراً لفظام الجماد الجديدة ومزاياها المتعددة من خفة الوزن وسهولة التنفيذ وإمكانية التنفيذ دون حاجة لإخلاء المبان وبالتالي تقليل الإزعاج للسكان القاطنين.

إذاً، من خلال هذا الفصل، يمكن القول أنه تم إجراء مراجعة بحثية لمواضيع ذات صلة بالدراسة الحالية، حيث تم تضمين الخواص الميكانيكية المختلف للمواد المشكولة للمواد المكونة للمواد مثل البيتون والفلزات والجدران المكونة من مواد إسمنتية ووحدات بلوكت إسمنتية. وتم التطرق للخواص الميكانيكية لجوائز الإطارات المتعلقة بالمواد التي تشكلها ووحدات الإطارات المحاكاة. وتم توضيح كيفية تصرف هذه الجدران وأنماط الانهيار منها المختلفة.

كما تم استعراض العديد من الأبحاث والدراسات السابقة التي تناولت أثر إدخال مقاومة الجدران لرفع مقاومة الإطارات البيتونية المسمولة تحت تأثير الأحمال الجانبية في مستوياتها. بالإضافة إلى فعالية استخدام شرائح الـ FRP في رفع مقاومة الأحمال الجانبية في الإطارات المصنوعة من مواد إسمنتية ووحدات بلوكت إسمنتية.

إلا أن الدراسات والأبحاث رغم تطورها لأثر تغيير خواص الخواص الميكانيكية للمواد المكونة للمواد مثل البيتون والفلزات، لم تركز على تأثيراتها على فعالية استخدام شرائح الـ FRP في رفع مقاومة دعامة الإطارات المملؤة بجدران نظراً لفظام الجماد الجديدة ومزاياها المتعددة من خفة الوزن وسهولة التنفيذ وإمكانية التنفيذ دون حاجة لإخلاء المبان وبالتالي تقليل الإزعاج للسكان القاطنين.

إذاً، من خلال هذا الفصل، يمكن القول أنه تم إجراء مراجعة بحثية لمواضيع ذات صلة بالدراسة الحالية، حيث تم تضمين الخواص الميكانيكية المختلف للمواد المشكولة للمواد المكونة للمواد مثل البيتون والفلزات والجدران المكونة من مواد إسمنتية ووحدات بلوكت إسمنتية. وتم التطرق للخواص الميكانيكية لجوائز الإطارات المتعلقة بالمواد التي تشكلها ووحدات الإطارات المحاكاة. وتم توضيح كيفية تصرف هذه الجدران وأنماط الانهيار منها المختلفة.

كما تم استعراض العديد من الأبحاث والدراسات السابقة التي تناولت أثر إدخال مقاومة الجدران لرفع مقاومة الإطارات البيتونية المسمولة تحت تأثير الأحمال الجانبية في مستوياتها. بالإضافة إلى فعالية استخدام شرائح الـ FRP في رفع مقاومة الأحمال الجانبية في الإطارات المصنوعة من مواد إسمنتية ووحدات بلوكت إسمنتية.

إلا أن الدراسات والأبحاث رغم تطورها لأثر تغيير خواص الخواص الميكانيكية للمواد المكونة للمواد مثل البيتون والفلزات، لم تركز على تأثيراتها على فعالية استخدام شرائح الـ FRP في رفع مقاومة دعامة الإطارات المملؤة بجدران نظراً لفظام الجماد الجديدة ومزاياها المتعددة من خفة الوزن وسهولة التنفيذ وإمكانية التنفيذ دون حاجة لإخلاء المبان وبالتالي تقليل الإزعاج للسكان القاطنين.
الفصل الثالث
Chapter 03

التحليل الإنشائي باستخدام طريقة العناصر المحدودة

Structural Analysis using Finite Element Method (FEM)

1.3 مقدمة

Introduction

يتضمن هذا الفصل عملية بناء نموذج عددي (Numerical Model) لمحاكاة الدراسة التشريمية التي قام الباحثون (Ozkaynak et al., 2011) والتي سبق ذكرها في الفقرة (5.6.2)، وأجريت على إطار بوليمر مملوء ملموسة مملوء بجدران مقاوا بمجرات CFPR، تحت تأثير الأحمال الجانبية المطلوبة في مستوى الإطار. تم في هذا الفصل استخدام برنامج التحليل الإنشائي (ABAQUS, V6.12-1) واعتماد طريقة العناصر المحدودة (FEM)، حيث مرت عملية بناء النموذج العددي بعدة خطوات تبدأ باختيار أبعاد ومقاطع النموذج ومن ثم اختيار العناصر المحدودة المناسبة لكل عنصر من عناصر الجملة. الخطوة الثانية تتضمن اختيار الطرق المناسبة لنمذجة تصرف المواد المشكلة للنموذج ومن ثم ربط العناصر المختلفة لإنتاج الترابط والعمل المشترك فيما بينها، بعدا، تم اختيار الشروط المحيطة المناسبة لمحاكاة النموذج التجربى وإجراء عملية التحليل واستخراج النتائج. ومن ثم تم دراسة أثر تقارب الشبكة (Mesh Convergence) للحد من الأبعاد المثلثة للعناصر والتي تجمع سنة النتائج والاقتصادية في زمن التحليل. وللتأكد من جودة النموذج ونتائجه لابد من مقارنة النتائج مع نتائج النموذج التجربى المعتمد.

تم تقسيم عملية بناء النموذج إلى ثلاث مراحل: المرحلة الأولى هي بناء إطار البتوني المسفل بدون وجود جدار (Infilled Frame, Fw)، في المرحلة الثانية تم ملء الإطار البتوني المسفل بجدران (Bare Frame, F0)، بعدا، تم في المرحلة الثالثة تقسيم الجملة بالإضافة إلى شرائح الـ CFRP (StrengthenedInfilled Frame, Fw,FRP)

2.3 البرنامج الإنشائي المستخدم

Structural Analysis Software

ABAQUS, V6.12-1 (ABAQUS, V6.12-1) يعتمد بشكل أساسي على برنامج التحليل الإنشائي (Elements) يتميز بطريقة العناصر المحدودة (FEM) وتجزئة العناصر المختلفة (Materials) بامتلاكه مكتبة واسعة من العناصر المختلفة (Elements) ومواد (Materials) إضافة لامتلاكه طرقا عدة متقدمة (Element Interfaces and Contacts) لربط العناصر المختلفة (Materials). يمكن من خلال البرنامج إجراء تحليل خطي (Linear Analysis) أو خطي (Non-Linear Analysis) مع إمكانية أخذ لاحظة للمادة عند الاختصار أثناء التحليل (MaterialNon-linearity).
3.3 Materials Constitutive Models

Constitutive Models

Yılmaz program (ABAQUS V6.12, 2012) contains many constitutive models that simulate the behavior of various construction materials such as concrete (Elasto-Plastic behavior) and materials that behave linearly-creep (Fully Elastic behavior) until collapse as FRP. These models also simulate the behavior of materials like inelastic behavior (Inelastic Behavior), quasibrittle failure (Quasi-Brittle Failure), and materials with non-linear behavior (Non-Linear Behavior). The selection of the appropriate model depends on the material behavior and the specific application. In the case of concrete, three constitutive models are used:

1. Concrete Constitutive Models

- The first model is Smeared Crack Model, which is used in cases of monotonous straining. It is not suitable for cyclic loads.

- The second model is Brittle Cracking Model, which simulates cracking. It is appropriate for cyclic loads.

- The third model is Concrete Damaged Plasticity Model (CDP), which simulates both cracking and compressive crushing.
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

1.1.3.3 تصرف البيتون في حالة الشد الأحادي المحور

Concrete Uni-axial Tension behavior

في حالة الشد الأحادي المحور الشكل (3-1)، يبدأ سلوك البيتون بشكل خطي من حيث الوصول إلى إجهاد الانهيار على شكل (Failure stress) ويجدر بالولاتي (micro-cracking) في البيتون، بعدها يبدأ بالتشوه (Strain softening)، وتتشكل الشقوق وامتصاصها وتتصل عددها مع بعضها متراهمة من خلال ارتفاع الإجهاد - التشوه (Post-Failure) أو مرحلة البيتون المشتق، وتسمى بمرحلة تصلب الشد (Tension Stiffening).

الشكل (3-1) تصرف البيتون في حالة الشد المحوري (ABAQUS V6.12-1, 2012).

نتيجة لتشكل الشقوق في هذه المرحلة تتضمن القساوة المرنة للمادة ولكن بإمكان تأثير انخفاض القساوة المرنة المذكور أناياً، وفي حل الحمل عند أي نقطة في هذه المرحلة تعود المادة بميل E0، حيث E0 هو معامل المرونة الابتدائي غير التشبق للمادة (initial undamaged modulus) فينشأ ما يسمى بشقوق التشبق على الشد (Cracking strain) (Strain Cracking Strain) Etkc، ويع excelente بالعلاقة (3-1) ويعمل الفرق بين التشوب الكلي للمادة والتشوب المرنة المواقف للمادة قبل التشبق والذي يعبر دوارة بالعلاقة (3-2). يعبر تشو ريش التشبق على الشد من المعطيات الأساسية الواجب تعريفها في ABAQUS لتمثيل التشوب الكلي المشتق، حيث يتم تعريف مرحلة التشوب الشد بشكل جدول من حقولين: الحل الأول الإجهاد الشدة المقابلة لكل تشوب، ويضمن الحقل الثاني تشوب التشبقات على الشد

\[\varepsilon_{tkc} = \varepsilon_t - \varepsilon_{o\varepsilon} \]
\[\varepsilon_{o\varepsilon} = \frac{\sigma_t}{E_o} \]
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

يحدد انخفاض القساوة المرنة للمادة على الشد بالمعامل

\[d_t = \frac{(\sigma_{to} - \sigma_t)}{\sigma_{to}} \]

(3-3)

والذي يغير من تصرف المادة عند إزالة الحمل عند أي

نقطة في مرحلة تصلب الشد، حيث تعود المادة مبيل (1 - 1) أصغر من الميل السابق، ويتراوح ذلك مع ظهور

تشوهات لدنة على الشد (tensile equivalent plastic strains) في المادة تعبر به \(\varepsilon^{pl}_t \).

يمكن حساب المعامل \(d_t \) من خلال العلاقة (3-3) (Jankowiak and Lodygowski, 2005) وتتراوح قيمته بين الصفر، عندما تكون المادة ما زال سليمة غير متشققة، إلى الواحد عندما تنهار المادة بشكل كامل، ويعتبر من المعطيات الأساسية في ABAQUS تعرف احترار القساوة المرنة للمادة على الشد، حيث يتم تعريف انخفاض القساوة المرنة للمادة على الشد في مرحلة تصلب الشد بشكل جدول من حقولين: يعترف الحقل الثاني المعامل \(d_t \) بينما يعرف الحقل الأول الإجهاد المقابلة لكل تشوه \(\sigma_t \).

تكرار قيمته بين (Jankowiak and Lodygowski, 2005) احترار المادة ويقوم بحسابه بشكل آلي من خلال العلاقة (3-4):

\[\varepsilon^{pl}_t = \varepsilon^{el}_c - \frac{d_t}{1 - d_t} \frac{\sigma_t}{E_o} \]

(4-3)

2.1.3.3 تصرف البيتون في حالة الضغط الأحادي المحور

Concrete Uni-axial Compression behavior

في حالة الضغط الأحادي المحور (الشكل 3-2)، يبدأ سلوك البيتون بشكل خطئي مرن حتى الوصول إلى التدفق الأولي (Initial yield)، حيث تتحول العلاقة بين الإجهاد والتشوه إلى علاقة لدنة غير خطئي حتى الوصول إلى الإجهاد الحدي (Ultimate stress) على الضغط وتمثلي بمرحلة تقصية الضغط (Compression Hardening). بعدها تبدأ مرحلة انحدار في علاقة الإجهاد-التشوه (Strain softening) وتمثل هذه المرحلة مرحلة ما بعد الانهيار (Post-Failure).

نتيجة لتشكل الشقوق في هذه المرحلة تتخلص القساوة المرنة للمادة ولكن بإعمال تأثير انخفاض القساوة المرنة المذكور أعلا، وفي حال الحمل عند أي نقطة في هذه المرحلة تعود المادة مبيل (3-3) E₀، حيث هو معامل الرطوبة الابتدائي ويعتبر المتشقق للمادة غير الفائض (Initial Undamaged Modulus) المذكور أعلا، وفي حالة حمل عند أي نقطة في هذه المرحلة تعود المادة مبيل (3-3) E₀، حيث هو معامل الرطوبة الابتدائي

\[\varepsilon^{in}_c = \varepsilon_c - \varepsilon^{el}_c \]

(5-3)

\[\varepsilon^{el}_c = \frac{\sigma_c}{E_o} \]

(6-3)
يحدد انخفاض القساوة المرنة للمادة على الضغط بالمعامل
\(d_c \) والذي يغير من تصرف المادة عند رفع الحمل عند
أي نقطة في مرحلة تقسيم الضغط، حيث تعود المادة بميل
\(1 - (1 - d_c)E_0 \) أقل من الميل السابق، ويتراوح ذلك مع ظهور
تشوهات لدنة على الضغط (Compressive Equivalent Plastic Strains)
في المادة تعرف بـ \(\varepsilon^p_c \).

\[d_c = \frac{(\sigma_{cu} - \sigma_c)}{\sigma_{cu}} \] (7-3)

يمكن حساب المعامل \(d_c \) من خلال العلاقة (7-3) (Jankowiak and Lodygowski, 2005) وتتراوح قيمة بين الصفر، عندما تكون المادة ما تزال سليمة غير محظمة، وتجدون عند تناول المادة بشكل كامل، ويعتبر من المعطيات الأساسي في الم

ABAQUS لتعريف انحدار القساوة المرنة للمادة على الضغط، حيث يتم تعريف انخفاض القساوة المرنة للمادة على الضغط في مرحلة تقسيم الضغط بشكل جدول من حقلين: الحقل الأول يضم الإجهاد \(\sigma_c \) المؤكد لكل التشوه، بينما يضم الحقل الثاني المعامل.

\[\varepsilon^p_c = \varepsilon_c^{in} - \frac{d_c}{1 - d_c} \frac{\sigma_c}{E_0} \] (8-3)

تصرف البيتون تحت تأثير الأحمال الدورية

Concrete behavior under Cyclic Loads

أثبتت التجارب التي أجريت على المواد ذات الانهيار الشبيه باللهج (Quasi-Brittle) أن المادة تستعيد بعضًا من قساوتها عند تحويل الحمل من الشد إلى الضغط نتيجة لانغلاق بعض الشقوق المشابكة في مرحلة الشد عند تعرض المادة للضغط، وعلى العكس عند تحويل الحمل من الشد إلى الضغط فإن التشوهات لا تعود لتكسب أي قساوة.
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

التحليل

بأخذ برنامج الـ ABAQUS (Stiffness Recovery) تأثير استعادة القساوة عند تغير الحالة الإجهادية من شد إلى ضغط أو بالعكس، من خلال عاملين هما w_c و w_t، حيث يمثل المعامل w_c معامل استعادة القساوة على الضغط وقيمه الافتراضية 1، ما يعني استعادة القساوة بشكل كامل عند تحول الحمل من الضغط إلى الشد w_t معامل استعادة القساوة على الشد بينما يمثل المعامل w_c معامل استعادة القساوة على الضغط وقيمه الافتراضية $w_c = 1$، ما يعني عدم استعادة أي من قساوة المادة عند تحول الحمل من الضغط إلى الشد، وبين الشكل (3-3) تصرف المادة عند تغير الحمل لدورة كاملة (شد-ضغط-شد) وتأثير عوامل استعادة القساوة بافتراض $w_t = 0$ و $w_c = 1$.

الشكل (3-3) تصرف البيتون تغير الحمل لدورة واحدة شد-ضغط-شد

Concrete Modeling in numerical model in this study

توصيف مادة البيتون في النموذج العددي في الدراسة الحالية

ينتج نموذج الـ CDP إلى العديد من المتغيرات التي تعتمد التحريبي المتقدم لمادة البيتون المستخدمة، ونظراً لعدم توفير المعلومات الكافية فقد تم إعطاء هذه المتغيرات القيم المصاحبة باستخدامها من قبل الـ ABAQUS حيث تعطي قيمة زاوية التمدد للبيتون $\psi = 36^\circ$ (Dilation angle)، لمركزية التدفق الكامن (ratio of initial equibiaxial flow potential)، نسبة الضغط الثنائي المحاور إلى الضغط الأحادي المحور ($\sigma_0/\sigma_c = 1.16$) (compressive yield stress to initial uniaxial compressive yield stress ratio of the second stress invariant on the tensile meridian, \tilde{Q}_{TM}), to that on the compressive meridian \tilde{Q}_{CM}), معامل استعادة القساوة على الضغط $\mu = 0$ (Viscosity parameter), معامل النزوجة $k_c = 2/3$ (meridian, \tilde{Q}_{CM})، معامل استعادة القساوة على الشد $w_t = 0$ (Tension Recovery), معامل استعادة القساوة على الضغط $w_c = 1$ (Compression Recovery).
لتوصيف مادة البيتون في النموذج العددي (Numerical Model) لمحاكي الدراسة التجريبية التي قام الباحثون (Ozkaynak et al., 2011) والتي سبق ذكرها في الفقرة (5.2)، حيث بلغت مقاومة البيتون على الضغط 19MPa، لا بد من تعريف مخطط الإجهاد-التشوه للمادة أولاً وبغياب المعلومات التجريبية تم اعتماد تصرف البيتون المذكور سابقاً في الفقرة (1.2).

الشكل (3.4) منحنى الإجهاد-التشوه للبيتون على الضغط (الدراسة الحالية).

الشكل (3.5) منحنى الإجهاد-التشوه للبيتون على الشد (الدراسة الحالية)

لإيجاد منحنى الإجهاد-التشوه في حالة البيتون على الضغط تم اعتماد النموذج المذكور بالفقرة (1.1.3.1) والمعطى في المواصفة الأوروبية EN 1992-1-1 و(2.15)، ومن خلال استخدام العلاقة (6-2) تم الحصول على منحنى الإجهاد-التشوه للمادة المستخدم في الدراسة التجريبية والموضوح في الشكل (3.4) بينما تم استخدام العلاقة (9.2) لحساب معامل مرونة البيتون E_{cm} حيث بلغت قيمة البيتون 26675MPa، واعتبار معامل بواسون للبيتون 0.2. وقد بلغت قيمة التشوه النسبي الأعظمي عند الانهيار $\varepsilon_{cnt} = 0.0035$، بينما بلغ التشوه المواقيع للإجهاد الأعظمي على الضغط $\varepsilon_{ct1} = 0.0017$ (العلاقة 2.4).

الشكل (3.4) منحنى الإجهاد-التشوه للبيتون على الضغط (الدراسة الحالية).

الشكل (3.5) منحنى الإجهاد-التشوه للبيتون على الشد (الدراسة الحالية).
أما في حالة البيتون على الشد ولإجاد منحني الإجهاد-التشوه (الشكل-3)، تم اعتماد نموذج المذكور بالفقرة (2.1.3.2)، حيث تم استخدام العلاقة (2) للحصول على مقاومة الأعظمية للبيتون على الشد f_{ctm}، والموافقة للمشتقات المستخدمة في الدراسة التجريبية وقد بلغت 1.48MPa، واعتماد مطابقة مواد الصرح المحسوب سابقاً، تم اعتبار مرحلة تدهور المادة خطية حتى الانهيار (Linear softening) النسبي الأعظمي عند الانهيار لوصول فولاذ التشلطي الطولي إلى إجهاد السيلان أي 0.0201.

حيث يعتبر f_y عند إجهاد السيلان لفولاذ التشلطي الطولي، $E_s = 200\text{GPa}$، فيما يعتبر $E_y = 420\text{MPa}$.

النموذج البينيوي لجدران البلوك

Masonry Constitutive Models

تعتبر مادة الجدران المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle))، وبالتالي تم خلال الدراسة الحالية اعتماد نفس النموذج البينيوي لمادة البيتون الوارد في الفقرة (1.3.3) باستخدام الخواص الميكانيكية لمادة الجدار.

وصف مادة جدار البلوك في النموذج العددي

Masonry modeling in numerical model

وعلى النحو التالي.

١. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).

٢. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).

٣. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).

٤. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).

٥. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).

٦. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).

٧. **التشوه النسبي الأعظمي عند الانهيار (Linear softening):**

حيث تعتبر مادة الجدار المصنوعة من البلوك الإسمنتي مادة غير متجماسة تتصف بشكل مشابه لمادة البيتون وتنحرف بشكل شبه بالهش (Quasi-Brittle) (ABAQUS V6.12-1 (2012) (Quasi-Brittle)).
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

الشذ (Linear softening): خطية حتى الانهيار (Tension softening) كما في الشكل (2-16.a). وقد تم اعتبار قيمة

اء النسبة الأعظمي عند الانهيار (ABAQUS V6.12-1, 2012) (10\(\varepsilon_{tm}\))، أي (\(\varepsilon_{tu} = \varepsilon_{tm}\)).

امل الشذ النسبى المواقع للإجهاد (\(|f_{tm}/E_m|\))، حيث

\(\varepsilon_{tu}\) التشوه النسبي الموافق للإجهاد (أي \(\varepsilon_{tu} = 0.0019\).)

1.1.1 النموذج البنيوي لفولاذ التسليح

Steel Reinforcement Constitutive Models

كما ذكر في الفقرة (2.3) فإنه يمكن اعتبار تصرف فولاذ التسليح المطاطي تصرفاً مرناً. كامل اللدونة (perfectly Plastic) حتى الوصول إلى انهيار المادة كما هو موضح بالشكل (2-18)، وللمذج النصري المرن في (Ozkaynak et al., 2011) يجب إدخال كل من معامل مرونة فولاذ التسليح والذي بلغ حسب الدراسة التجريبية المعتمدة ABAQUS 200GPa et al., 2011)، ومعامل بوسون 0.3، وللتعريف النصري اللدن للمادة يجب إدخال قيمة الإجهاد الذي تبدأ عنده المرحلة اللدنية وهو حد السيلان لفولاذ التسليح والبالغ 420MPa، وقد تم توضيح ذلك من خلال الشكل (3-8).
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

4.3.3 النموذج البينيوي لشرائح الـ CFRP الأحادية الاتجاه

ورد في الفقرة (2.5.2) أن سلوك شرائح الـ CFRP أحادية الاتجاه هو سلوك تام المرونة (Fully Elastic) حتى الوصول إلى انهيار المادة كما هو موضح بالشكل (2-24)، وتمدح التصرف المرن في المادة يمكن إدخال كل من معامل مرونة الشرائح باتجاه الألياف، والذي بلغ حسب الدراسة التجريبية المعتدلة 230GPa، ومعامل وبواسون 0.35، وبين الشكل (3-9) مخطط الإجهاد-التشوه للشرائح المستخدمة. بالإضافة إلى ذلك فقد تم إدخال حدود الإجهاد المرن بتعريف إجهاد تمزق المادة (3900MPa) والتشوه المقابل لهذه التمزق (1.5%).

الشكل (3-8) منحنى الإجهاد-التشوه لفولاذ التسليح المستخدم (الدراسة الحالية).

الشكل (3-9) منحنى الإجهاد-التشوه لشرائح الـ CFRP المستخدمة (الدراسة الحالية).

4.3 العناصر المحدودة

Finite Elements

يتضمن برنامج التحليل الإنشائي (ABAQUS V6.12-1, 2012) العديد من العناصر المحدودة (Finite Elements) والتي تختلف فيما بينها بعدد العقد وعدد درجات الحرية لكل عقدة، ويجب اختيارها بدقة وفقًا للحالة الإجهادية المدروسة وسيتم فيما يلي اختيار العناصر المحدودة المناسبة لمنطقة كل عنصر من عناصر الجملة المدروسة.
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

cps4r

تتم استعمال حالة الإطار البيتونى المسلح المملوء بجدار برك من الحالات الإجهادية المستوية (Plane Stress) في حالة الإجهادات في مستوى الجملة، حيث أن ظهور تشكيلات في هذا الاتجاه، ومعنًى آخر في حالة اتساع مستوى الجملة هو المستوى 1، والمستوى العمودي على الجملة 3، بينما يكون في مستوى الجملة على الجملة (σ₁₁ ≠ 0, σ₂₂ ≠ 0), بينما يكون في المستوى العمودي على الجملة (ε₃ ≠ 0, σ₃₃ = 0).

لذلك تم اختيار العنصر CPS4R (4-node bilinear, reduced integration with hourglass control) يتألف من أربعة عقدة ولكل عقدة درجة حرية 1، في مستوى العنصر، الرمز (R) يرمز إلى التخفيف في نقاط التكامل (Gauss Points). وكان في نظام الإجهاد (σ₁₁ ≠ 0, σ₂₂ ≠ 0). وقد تم استخدام هذا العنصر لنمذجة كل من عناصر الإطار البيتونى وفولاذا التسليح الطولي إضافة لجدار البلوك الأسمنتي.

\[
\begin{align*}
\text{ABAQUS V6.12-1, 2012 (CPS4R)}
\end{align*}
\]

cps4r

تتم استعمال حالة الإطار البيتونى المسلح المملوء بجدار برك من الحالات الإجهادية المستوية (Plane Stress) في حالة الإجهادات في مستوى الجملة، حيث أن ظهور تشكيلات في هذا الاتجاه، ومعنًى آخر في حالة اتساع مستوى الجملة هو المستوى 1، والمستوى العمودي على الجملة 3، بينما يكون في مستوى الجملة على الجملة (σ₁₁ ≠ 0, σ₂₂ ≠ 0), بينما يكون في المستوى العمودي على الجملة (ε₃ ≠ 0, σ₃₃ = 0).

لذلك تم اختيار العنصر CPS4R (4-node bilinear, reduced integration with hourglass control) يتألف من أربعة عقدة ولكل عقدة درجة حرية 1، في مستوى العنصر، الرمز (R) يرمز إلى التخفيف في نقاط التكامل (Gauss Points). وكان في نظام الإجهاد (σ₁₁ ≠ 0, σ₂₂ ≠ 0). وقد تم استخدام هذا العنصر لنمذجة كل من عناصر الإطار البيتونى وفولاذا التسليح الطولي إضافة لجدار البلوك الأسمنتي.

\[
\begin{align*}
\text{ABAQUS V6.12-1, 2012 (CPS4R)}
\end{align*}
\]

t2d2

يعتبر العنصر T2D2 (2-D stress/displacement truss elements) T2D2 يتألف من عقدتين والكل عقدة درجتي حرية 2 في مستوى العنصر، يستخدم العنصر نقل القوى المحمولة فقط (Forces Axial). وقد تم استخدام هذا العنصر للمجذحة كل من عناصر الأساور (Stirrups) في جوانب وأعمدة الإطار البيتونى. ABAQUS V6.12-1, 2012 (T2D2).

\[
\begin{align*}
\text{ABAQUS V6.12-1, 2012 (T2D2)}
\end{align*}
\]
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

3.4.3 العنصر المحدود

Spring2

Spring2 Finite Element

إن العنصر Spring2 (Spring between two nodes, acting in a fixed direction) وهو عنصر يربط بين القوة (Force) وإما الانتقال النسبي (Relative Displacement) أو الدوران النسبي (Rotation) بين مجموعتين باعتبار أحد درجات الحرية لكل من العقدتين، ويعتمد عادة على تدمير النواحي الفيزيائية أو تقليد الحركة بين العقد (Restrain).

يتميز العنصر بإمكانية منحمة التصرف بين القوة والانتقال/الدوران بشكل خطوي (Linear) أو أولاً خطي (Nonlinear) كنا في الشكل (3-13). درجات الحرية للعنصر هي درجة حرية واحدة عند كل عقدة يتم اختيارها من أحد درجات الحرية من 1 إلى 6، والتي تمثل ثلاثة انتقالات وثلاثة دورانات، ويمكن تعريف درجة الحرية باعتماد نظام الإحداثيات العامة (Global Degrees of Freedom) أو تعريف نظام إحداثيات محلية (Local Degrees of Freedom) والانتقال النسبي (Relative Displacement).

(ABAQUS V6.12-1, 2012)

(ABAQUS V6.12-1, 2012)

ولقد تم استخدام هذا العنصر لتعريف التماسك بين البيتون وفولاذا التسليح الطولي، وكذلك لتعريف التماسك بين CFRP والجدران الإسمنتي والبيتون.
5.3

ربط العناصر المحدودة

Finite Elements Interface

لا بد للحصول على التصرف الدقيق للجملة من ربط العناصر المختلفة، ولذلك سيتم فيما يلي تأمين الربط الصحيح بين كل من العناصر الممثلة للبيتون والعناصر الممثلة لفولاذ التسليح الطولي والعرضي، ومن ثم تأمين الربط الصحيح بين الإطار الببتيوني والعناصر الممثلة لجدار البلوك الإسمنتي، وكذلك ربط كل من العناصر الممثلة للـCFRP والعناصر الممثلة لكل من البيتون وجدار البلوك الإسمنتي.

ربط البيتون مع فولاذ التسليح الطولي

Concrete - Steel Reinforcement Interface

في الاتجاه الموازي للسطح بين البيتون وقضبان التسليح تم أخذ تأثير التماسك-الانزلاق بين البيتون وفولاذ التسليح بعين الاعتبار، حيث تم اعتماد نموذج التماسك بين البيتون وفولاذ التسليح الذي تم توضيحه في الفقرة (3.2) والمأخوذ من (CEB-FIP, 2010). تم في البدء رسم المنحنى علاقة إجهاد التماسك - الانزلاق النسبي والذي تم توضيحه من خلال الشكل (2-2). لذا تم تعويض قيم خواص المواد المأخوذة من الدراسة التجريبية المعتمدة (Ozkaynak et al., 2011) في العلاقات من (2-11) إلى (2-16). تم اعتماد القيم التالية للانزلاق المعرف للمنحنى السابق 3.6, 10mm للفوهة، و1.8, 3.6, 10mm على التوالي، ويبين الشكل (3-11). تم اعتماد القيم التالية: S1, S2, S3، على التوالي، ويبين الشكل (3-14). منحنى إجهاد التماسك - الانزلاق الناتج.

تمت تنفيذ هذه العلاقة باستخدام تأثير التماسك-الانزلاق في العناصر المحدودة باستخدام العنصر ABAQUS SPRING2 في الاتجاه الموازي للسطح مع عقد العناصر الممثلة لقضبان التسليح، وكان لابد في البداية من تحويل علاقة إجهاد التماسك-الانزلاق (الشكل 3-14) إلى علاقة قوة التماسك - الانزلاق للتوافق مع مدخلات العنصر SPRING2 المبينة بالشكل (3-15). وهي القوة والانزلاق النسبي. للقيام بذلك تم احساب القوة من خلال ضرب إجهاد التماسك بسطح التماس بين القضبان والبيتون والذي هو عبارة عن محيط قضيب التسليح مضروبًا بالطول الذي يخطي النابض الواحد بين فولاذ التسليح والبيتون. في النهاية تم إدخال إجهاد التماسك إلى الصفوف عند اتخاذ إجمالي مقدار ثلاث أضعاف الانزلاق النسبي إلى أي أسفل 30mm (CEB-FIP, 2010)، واعتبار أنه انهيار التماسك بين البيتون وفولاذ التسليح بشكل كامل ما ي ضمن خروج العنصر SPRING2 عن العمل عند الانهيار.

الشكل (3-14) علاقة إجهاد التماسك - الانزلاق النسبي بين البيتون وفولاذ التسليح الطولي (الدراسة الحالية).
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

الشكل (3.15) علاقة قوة التماسك - الانزلاق النسبي بين البيتون وفولاذ التسليح الطولي (الدراسة الحالية).

رابط البيتون مع الأساور العرضية

Concrete - Stirrups Interface

تم في هذه الدراسة اعتبار التماسك بين الأساور العرضية في كل من أعمدة وجائز الإطار البيتونى المسلح كتماسك مطلق وثام (Perfect bond) وبذلك تم إهمال الانتقال النسبي بين المادتين، كون هذا الافتراض كاف ولا يؤثر في دقة النتائج، ذلك أن الأساور تستخدم للتطويق العرضي ومنع تحنيب التسليح الطولي والتماسك فيها مؤمن.

رابط الإطار البيتونى المسلح وجدار البلوك الإسمنتي

RC Frame - Masonry Wall Interface

أثناء عملية التشيد عادة ما يتم وصل الجدران إلى الإطارات البيتونية باستخدام المونة الإسمنتية، ويعتبر هذا الرابط ضعيف نسبياً حيث ينهار عند حصول انتقال نسبي صغير في السطح الفاصل بين الجدار والإطار البيتونى المسلح. وهذا ما يحصل عادة عند تعرض الجلبة المكونة من الإطار البيتونى والجدار المالي للإهمال الجانبي في مستوى الجلبة، حيث تؤدي الحركة في مستوى الجلبة إلى انفصال الجدار عن الإطار في بعض نقاط التماس عندما ينعدم أي انتقال للقوى بين السطحين الشكل (3-11-a)، بينما في نفس الوقت يحصل تماس في نقاط أخرى يؤدي إلى حدوث ضغط بين السطحين (Contact Pressure).

(ABAQUS V6.12-1, 2012)
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

إن ترافق حصول الضغط بين السطحين مع انتقال نسيبي في نفس نقطة التماس يؤدي لظهور قوى احتكاك (Friction) أو ما يسمى إجهاد قص سطحي (Shear Stress) عندما يحصل انزلاق بين السطحين (Slip) مع استمرار انتقال قوي الضغط بين السطحين كما هو مبين بالشكل (3-16-b). تحت تأثير الأحمال الدورية تتكرر هذه الميكانيكية في نقاط عديدة من سطح التماس وتتحول بين حصول انغلاق بين السطحين أو انفصال وتؤدي إلى نقل القوى والتشوهات بين الإطار البيئوني وجدار البلوك.

لتأمين هذه الميكانيكية تم استخدام سطح التماس (Contact Pair) المبين بالشكل (3-17)، وضمن معن احتكاك عند أحد السطحين للسطح الآخر فيحصل تماس بين السطحين يترافق مع نقل قوى الضغط في نقاط التماس. لإدخال اثر الاحتكاك بين السطحين، تم تعريف معامل احتكاك \(\mu \) بين السطحين بقيمة 0.4 موقفة للاحتكاك الحاصل بين مادتي البلوك والبيتون. كذلك تم استخدام نفس الطريقة لربط جدار البلوك الإسمنتي مع أساس الإطار البيئوني المسلح.

تم تطبيق وتطبيق في هذا الدراسة مفهوم طاقة الانهيار (Fracture Energy) \(G_f \) وعلاقة إجهاد التماسك-الانزلاق التي تم إيضاحا سابقا بالشكل (2-26). وتتطبيق العلاقات من (2-17) إلى (2-20) تم الحصول على المحتوى الممثل للتماسك-الانزلاق بين مادة الجدار ومادة CFRP، والمرافق للخصائص الميكانيكية البارزة في الدراسة التجريبية (Ozkaynak et al., 2011) واليمن بالشكل (3-18)، حيث يتم المحور الأفقي للانزلاق، بينما يتم المحور الشاقولي إجهاد التماسك الذي يزداد مع زيادة الانتقال وصولاً إلى إجهاد التماسك الأعظمي بين المادتين مقداره \(S_m = 1.71\text{MPa} \) وموافقا لانزلاق نسيبي بين المادتين مقداره 0.56 ميليمترات، ومن بعدها بدأ إجهاد التماسك بال茭ق حتى الوصول إلى افساح المادتين عند انزلاق نسيبي حدي صغير.

\[S_u = 0.225\text{mm} \]

تمت نمذجة هذه العلاقة باستخدام العنصر SPRING2 ABAQUS، بالربط على عنصر ممثل لجدار البلوك مع عدد العناصر الممثلة لشرائح CFRP، وذلك تم تحويل علاقة إجهاد التماسك – الانزلاقات (الشكل 3-18) إلى علاقة قوة التماسك - الانزلاق للتوافق مع مدخلات العنصر SPRING2 المبينة

\(\sigma_{un} = 3.43 \)لربط عدد العناصر الممثلة لجدار البلوك مع عدد العناصر الممثلة لشرائح CFRP. وتم تحويل علاقة إجهاد التماسك – الانزلاق (الشكل 3-18) إلى علاقة قوة التماسك - الانزلاق للتوافق مع مدخلات العنصر SPRING2 المبينة

\(\tau_{un} = 10^{-4} \text{mm} \) متقاررة

\(S_u = 0.225\text{mm} \)

تم استخدام العنصر SPRING2 ABAQUS في الفقرة (3.4.3) لربط عدد العناصر الممثلة لجدار البلوك مع عدد العناصر الممثلة لشرائح CFRP، وذلك تم تحويل علاقة إجهاد التماسك – الانزلاق (الشكل 3-18) إلى علاقة قوة التماسك - الانزلاق للتوافق مع مدخلات العنصر SPRING2 المبينة

\(\sigma_{un} = 3.43 \)لربط عدد العناصر الممثلة لجدار البلوك مع عدد العناصر الممثلة لشرائح CFRP. وتم تحويل علاقة إجهاد التماسك – الانزلاق (الشكل 3-18) إلى علاقة قوة التماسك - الانزلاق للتوافق مع مدخلات العنصر SPRING2 المبينة

\(\tau_{un} = 10^{-4} \text{mm} \) متقاررة
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

بالشكل (3-19) وهي القوة والانزلاق. حيث تم حساب القوة من خلال ضرب إجهاد التماسك بسطح التماس بين الشرائح والجدار الذي يعطيه النابض الواحد بين الجدار والـ FRP.

2.1 الشروط المحيطة

لمحاكاة ترتيبات النموذج التجربياً (Ozkaynak et al., 2011) والمبينة بالشكل (1-31) بشكل واقعي، تم اعتماد الشروط المحيطية الموضحة بالشكل (3-20)، حيث تم منع العقد الممثلة لكل من البيتون وفولاذ التسليح في أسفل أعمدة الإطار من الحركة بالاتجاهين الأفقي والشاقولي كما هو مبين بالشكل (3-21-a)، وتطبيق الانتقالات الدورية المطلقة في المستوى جانبي الإطار، تم استخدام تعلمية Amplitude مستوي جانبي الإطار، تم من خلالها تعريف سجل تغير الانتقالات الدورية مع الزمن والذي تم من خلالها تعريف سجل تغير الانتقالات الدورية مع الزمن وترجح نسب (Drift ratio) المبينة بالشكل (2-39) حتى الوصول إلى انتقال أعظمي 20mm، والمواصفات لأنزياح نسبي مقداره 2.5% (الدراسة الحالية).
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

حسب توصيات المواصفات الخاصة بالزلازل (BS EN 1998-1, 2004), وتم تقيد عقد البيتون في مستوى جائز الإطار بهذا السجل كما هو مبين في الشكلين (3-20 و 3-21-b).

التحليل المستخدم

Analysis Type

تم تحليل النموذج العددي باستخدام ABAQUS/Standard لإجراء تحليل ضمني (Implicit) وواخطي (Nonlinear) لإجراء تحليل ضمني (MNA). يعتمد التحليل على حل تكاملات معادلات الحركة (Equations of Motion) في حالة عدم التوازن الإنشائي (Nonlinear Equilibrium Equations) عند كل زيادة في الزمن (Time Increment) ويتم الحل بالإعادة والتكرار (Iteratively) باستخدام طريقة نيوبتون (Newton's Method) وتعتبر الطريقة الضمنية (Implicit) من التحليل مناسبة للأحمال السطحية والديناميكية ذات السرعات القليلة (Low-speed Dynamic).
8.3 دراسة تقارب الشبكة

Mesh Convergence

لتحديد الأبعاد الأمثلية للعناصر المختلفة في النموذج التي تحقق في الوقت نفسه دقة النتائج المناسبة مع زمن التحليل الأمثل، تم بناء نموذج الإطار البيئوني المسلحة المعلوه بجدار بلوك بأبعاد مختلفة للعناصر 20x20mm، 30x30mm، 40x40mm. بين النموذج (3-22) دراسة أثر تقارب الشبكة، حيث يمثل المحور الأفقي مقلوب عدد درجات الحرية (Degree of Freedom, DOF) للفضاء، بينما يمثل المحور الشاقولي قوة القص القاعدي العظمى الناتجة (Tensile Resisting Forces, TRF) من التحليل. بأخذ هذه النقطة، يلاحظ من خلال النموذج (3-23) أن النتائج التي أعطتها النماذج الثلاثة مقارنة حيث بلغت قوة القص القاعدي الأعظمية 96,99,102kN في النموذج ذي الأبعاد 30x30mm، 20x20mm، 40x40mm, 30x30mm. 30x30mm، 30x30mm. لذلك تم استخدام النموذج بأبعاد عناصر 30x30mm حيث أعطى هذا النموذج وفراً في زمن التحليل مقارنة مع النموذج ذي الأبعاد 20x20mm و120% مقارنة مع النموذج 40x40mm. 40x40mm. 40x40mm. بالتالي تم بناء كافة النماذج الرياضية اللازمة لإجراء البحث الحالي باستخدام النموذج بأبعاد عناصر 30x30mm لكل من مراحل التحقق من مطابقة النموذج للدراسة التجريبية ومن ثم الدراسة البارامترية كما سيرد لاحقاً في الفصل الرابع.

الشكل (3-22) دراسة أثر تقارب الشبكة للنموذج العددي (الدراسة الحالية).

9.3 التحقق من النموذج العددي

Numerical Model Verification

بعد أن تم تمت دراسة أثر تقارب الشبكة في الفقرة (8.3)، تم التحقق من نتائج النموذج العددي عن طريق مقارنتها مع نتائج الدراسة التجريبية (Ozkan et al., 2011). ولذلك تم تقسيم عملية التحقق النموذج العددي إلى ثلاث مراحل:

- المرحلة الأولى هي مرحلة بناء الإطار البيئوني المسلح بدون وجود جدار (Bare Frame, Fb)، ومن ثم التحقق منه في (Infilled Frame, Fi).
- المرحلة الثانية ثم ملء الإطار البيئوني المسلح بجدار (Bare Frame, Fb). (Infilled Frame, Fi).
- المرحلة الثالثة ثم ملء الإطار البيئوني المسلح بجدار (Bare Frame, Fb). (Infilled Frame, Fi).
1.3.1 Verification of RC Bare Frame (F_0)

In the first phase, the construction of the model (F_0) was carried out, which is a concrete frame without reinforcing. The model is shown in Fig. 1-11-a. The model was constructed with concrete and steel elements with dimensions of 30x30mm as reported in the study of the network (section 1.3), and reinforcing elements were selected in section 1.3, where the CPS4R element was used for concrete and the T2D2 element was used for modeling the vertical reinforcing elements of the frame and columns. The different elements were connected in the way described in section 1.1.3 (and section 1.1.3) for the connection between concrete and steel elements. In the last step, the environmental conditions were set in section 1.3 to complete the analysis reported in section 7.3.

To obtain the yield line that connects the movement at the top of the concrete frame with the yield capacity, the hysterical loops (Hysterical Loops) were drawn (and then the boundary of these loops was drawn in Fig. 3-11). It was observed that the yield capacity begins to change when the displacement $\Delta = 8.5 mm$ starts to change, which means that the yield capacity of the concrete elements has decreased when this point is reached due to the mechanical collapse explained in Fig. 3-11-a in the concrete columns and beams. It can be seen that the boundary of the hysterical loops is almost horizontal, indicating that the yield capacity is stable with increasing displacements due to the formation of plastic hinges at the top and bottom of the columns, which is the failure pattern in the test. The maximum yield capacity was 41.28kN in the positive wave and 41.72kN in the negative wave, and it was noted that the boundary is very close in both cases.

To verify the numerical model results, the results were compared with the experimental model in the reference study, where Fig. 3-11 shows the comparison of the hysterical loops boundary for the numerical model in the current study for the concrete frame without a wall (F_0) (the experimental results).
التحليل الإنشائي

المنجوب الإسباني مع الحلقات الهرستيرية للدراسة التجريبية، حيث يمثل المحور الافتراضي للاختلافات الأفقية النسبية لأعلى الإطار مقاسة بـ mm، بينما يمثل المحور الشاقولي قوة القص الفاعلي مقاسة بالـ kN.

ببين من الشكل (3-3) مدى التقارب الواضح بين الحلقات الهرستيرية للدراسة التجريبية ومغلف الحلقات في النموذج العددي، وبمقارنة قوى القص الأعظمية في كل من النموذجين تبين أن الاختلاف وصل إلى 0.6% في حالة الهزة الموجبة، و35.4% في حالة الهزة السالبة.

إن الاختلاف الملحوظ في الهزة السالبة (35.4%) بين الدراستين العددي والتجريبية يعبر عن عدم وجود شبه التناظر.

في نتائج الدراسة التجريبية لحالة الهزة السالبة، يلاح بحالة الهزة الموجبة دون وجود سبب واضح لهذا الاختلاف، وقد ظهر عدم التناظر في حالة الإطار البيئوني المسلح غير المسلح بجدار (Bare Frame).

وتنطبق على قيم القص الفاعلي في حالتي الهزة الموجبة والسالبة في كل من نموذجين الإطار البيئوني المسلح المعدل بجدار البلوك والنموذج المقوى بالـ CFRP.

كما أن نتائج الدراسات المرجعية الأخرى والمتضمنة بالأشكال (2-3) تؤكد ضرورة وجود شبه تناظر.

في النتائج في كل من الهزتين المتوجبة والسالبة، ينطلق على تعبير شبه التناظر الناتج في الدراسة العددي صحيحاً، ويمكن صحة نتائج النموذج العددي (Fw) و خاصة أن نتائج النموذجين (Fw,FRP) المعتمدة في الدراسة متتابقة مع نتائج الدراسة التجريبية المعتمدة كما يسير في الفترتين (2.9.3) و (3.9.3).

بين الشكلان (3-26-h) و (3-26-c) أشكال انهيار كل من النموذجين التجبري والعددي ويتضح جلياً بمقارنة الشكلين التقارب الكبير في أماكن وعدد الشقوق المشتركة بشكل رئيسي في عقد الإطار البيئوني وأسفل الأعمة، وهو ما يعزز من موثوقية النموذج الرياضي، ويمكن ضمن حدود قبول هذا الفرق اعتماد نتائج النموذج العددي واعتباره مناسباً لاستكمال الدراسة البارامترية فيما بعد.

الشكل (3-24) نتائج النموذج الرياضي (Fw) (الدراسة الحالية)
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

الشكل (3-26) مقارنة نتائج الرياضي (F_r) مع الدراسة التجريبية.

التشوهات النسبية الرئيسية عند انتقال 2.5mm (الدراسة الحالية)

التشوهات النسبية الرئيسية عند انتقال 20mm (الدراسة الحالية)

التشوهات الحاصلة في النموذج التجربي (Ozkaynak et al., 2011)

(3-25) مقارنة تشوهات النموذج الرياضي (F_r) مع الدراسة التجريبية عند نهاية التحليل.
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

التحليل

الإنشائي

باستخدام

طريقة

العناصر المحدودة

التحقق من نموذج الإطار البيئوني المملوء بجدار البلوك

(\(F_{w}\))

في المرحلة الثانية تم بناء النموذج (\(F_{w}\)) الذي يحاكي النموذج التجريبي للإطار البيئوني المملوء بجدار بلوك (Frame Infilled (Fw))، حيث تم إضافة جدار البلوك إلى النموذج السابق (\(F_{w}\))، حيث استخدم العناصر CPS4R، كما ورد في الفقرة (4.3) بأبعاد عناصر 30x30 mm وحسبما ورد في نتائج دراسة أثر الشبكة (البقرة 8.3). تم ربط العناصر الجدار مع الإطار البيئوني المملوء بالطريقة الموضحة بالفقرة (3.1.3) ويعتبر وجود انزلاق بين السطوح المتقابلة لكل من الإطار البيئوني المملوء وجدار البلوك في الخطوة الأخيرة تم إضافة الشروط المحيطة بالمينة بالبقرة (6.3) باستخدام التحليل الارد في الفقرة (7.3).

تم رسم المنحنى الذي يربط الانتقال في أعلى الإطار البيئوني مع قوة القص القاعدي، وكذلك مغلف الحلقات الهستيرية (Hysterical Loops) الناتجة من نتائج التحليل (الشكل 3-27). يلاحظ أن مغلف الحلقات الهستيرية أن قساوة الجملة تتغير عند الوصول إلى انتقال مقدار \(\Delta = 2.5 mm\) حيث يبدأ المغلف بالتغير بشكل كبير ما يعني أن انخفاضاً واضحاً في قساوة الجملة قد حدث عند هذا النقطة نتيجة لتشكل المفاصل المعلقة في أعلى وأسفل أعمدة الإطار البيئوني المملوء (الشلك 3-29-a)، ومن ثم يستمر المغلف بصعود طفيف حتى الوصول إلى انتقال مقدار \(\Delta = 15 mm\) لتبدأ عندما تقابلاً المغلف (الشلك 3-29-b)، حيث يظهر انخفاض واسعاً من خلال شكل التشوهات النسبية الرئيسية بالمينة بالشلك (3-29-b)، حيث يظهر الشق القلبي باللون الرمادي في مركز الجدار. بعد هذه المرحلة استمر تشكل الشقوق القطرية وانتشارها تصبح في نهاية التحليل عند الانتقال بالشلك (3-30-b) منفقين في مركز الجدار مما هو مبين في الشكل (3-30-a). بلغت قيمة القص القاعدي العظمي 90.71kN في الهزة الموجبة و93.81kN في الهزة السالبة، ولوحت أن المغلف متوازن تقريباً في كل من حالتين الوزنة الموجبة والسالبة.

لتتحقق من صحة النتائج النموذجي في الدراسة الحالية تم مقارنة النتائج مع النموذج التجريبي في الدراسة المرجعية (Ozkaynak et al., 2011)، حيث بين النتائج (31) مقارنة مغلفات الحلقات الهستيرية للنموذج العددي للإطار البيئوني المملوء بجدار البلوك الأساسي مع الحلقات الهستيرية للدراسة التجريبية، حيث يمثل المحور الأفقي
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

الانتقالات الألفية النسبية لأعلى الإطار مقاسة بـ \(mm \) ، بينما يمثل المحور الشاقولي قوة القفص القاعدي مقاسة بالـ \(kN \) ويتبين من الشكل (3-31) ومن خلال مقارنة الحلقات الاستجابة للدراسة التجريبية ومغلض الحلقات في النموذج العددي انقارب الكبير بين الدراسة التجريبية والدراسة العددي، كما أنه ومقارنة قوى القفص الأعظمية في كل من النموذجين تبين أن الاختلاف وصل إلى 2.3% في حالة الهزة الموجبة، و2.2% في حالة الهزة السالبة. بالنظر إلى التشوهات الحاصلة عند نهاية التحليل في كل من النموذجين العددي والتجريبي (الشكل 3-31) ، يتبين التفاوت في التشوهات في كل من الجدار والإطار البيتونى وهو ما أعطى دليلاً إضافياً على صحة النموذج العددي المستخدم في الدراسة الحالية. وقد تم اعتبار الاختلاف البسيط بين النموذجين ضمن الحدود المسموحة وبناء عليه فقد تم قبول نتائج النموذج العددي واعتباره مناسباً لاستكمال الدراسة البارامبرية فيما بعد.

الشكل (3-28) نتائج النموذج الرياضي (\(F_w \)) (الدراسة الحالية).

الشكل (3-29) التشوهات النسبية الرئيسية للنموذج (\(F_w \)).
Fig. 3.3 Comparison between the numerical analysis results and the experimental results.

The analytical solution for the strengthened frame (FRP) was selected to represent the problem. The analytical solution was compared with the experimental results obtained by Ozkaynak et al. (2011). The comparison was performed by calculating the relative deformations at a 20mm displacement (the analysis phase).

In the second phase, the numerical model (WFRP) was built and analyzed. The model was compared with the experimental results obtained by Ozkaynak et al. (2011) for the same frame. The comparison was performed by calculating the relative deformations at a 20mm displacement (the analysis phase).

The analytical solution for the strengthened frame (FRP) was selected to represent the problem. The analytical solution was compared with the experimental results obtained by Ozkaynak et al. (2011). The comparison was performed by calculating the relative deformations at a 20mm displacement (the analysis phase).

The analytical solution for the strengthened frame (FRP) was selected to represent the problem. The analytical solution was compared with the experimental results obtained by Ozkaynak et al. (2011). The comparison was performed by calculating the relative deformations at a 20mm displacement (the analysis phase).
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

التحليل

الإنشائي

باستخدام

طريقة

العناصر المحدودة

تم رسم المنحنى الذي يربط الانتقال في أعلى الإطار البيتوني مع قوة القص القاعدي بالإضافة إلى مغلف الحلقات الهستيرية (Hysterical Loops) الناتجة من نتائج التحليل (الشكل 3-33).

الشكل (3-32) نموذج الإطار البيتوني مع جدار البلاوک المقوى بالـ CFRP (F_{w,FRP}) (الدراسة الحالية).

يرى من مغلف الحلقات الهستيرية أن قساوة الجملة تبدأ بالتغير عند الوصول إلى انتقال مقداره $\Delta = 8.5 mm$، حيث يبدأ ميل المغلف بالتغير بشكل كبير ما يعني أن تغيراً في قساوة الجملة قد حدث عند هذه النقطة نتيجة لتشكل المفاصل اللدنة في أعلى وأسفل أعمدة الإطار البيتونى، ومن ثم يستمر المغلف بصعود طفيف ليتحول بعدها إلى خط مستقيم ما يعني ثبات القص القاعدي مع ازدياد الانتقالات، وهو نمط الانهيار في التجربة. بلغت قيمة القص القاعدي العظمى في الهزة الموجبة $125.83 kN$ و$121.35 kN$ في السالبة، ولاحظ أن المغلف متناظر تقريباً في كل من حالتين الهزة الموجبة والسالبة. يمكن من الشكل (3-34) ملاحظة التشققات الحائطة في كل من الإطار البيتونى والجدار عند انتقال $\Delta = 2.5 mm$، حيث تظهر التشققات باللون الرمادي مترامية بشكل روسي في مركز الجدار في المناطق المتوضعة حول شرائط CFRP (الدراسة الحالية) إضافة إلى التشققات الحائطة في أعلى وأسفل الأعمدة.
لتلقيح من صحة نتائج النموذج العددي تم مقارنة النتائج مع النموذج التجربي في الدراسة المرجعية، حيث بين الشكل (3-35) مقارنة مغلفات الحلقات الهستيرية للنموذج العددي للإطار البيتوني مع وجود جدار البلوك الإسمنتي المقوى بال CFRP مع الحلقات الهستيرية للدراسة التجريبية، حيث يمثل المحور الأفقي الانتقالات الأفقية النسبية لعلي الإطار مقاسة kN بـ mm، بينما يمثل المحور الشاقولي قوة القص القاعدي مقاسة بالـ mm.

يتبين من الشكل (3-35) مدى التقارب الواضح بين الحلقات الهستيرية للدراسة التجريبية ومغلف الحلقات في النموذج العددي حتى مراحل متقدمة من التحليل حتى الوصول إلى انتقال بين 15-18 mm، حيث يظهر في الدراسة التحريبي هبوط في قوة القص القاعدي بسبب انهيار التماسك وانفصال الشرائح عن السطح الحامل لها بينما تستمر قوة القص القاعدي في النموذج العددي بنفس القيمة تقريباً ما يدل على شكل ميكانيكي انهيار لدن للجملة في هذه المرحلة دون حدوث انهيار في النموذج الرياضي. وبمقارنة قوى القص الأعظمية في كل من النموذجين تبين أن الاختلاف وصل إلى 1.1% في حالة الهزة الموجبة، و9.8% في حالة الهزة السالبة. بالنظر إلى التشوهات الحاصلة عند نهاية التحليل في كل من النموذجين الرياضي والتجريبي (الشكل 3-36)، يتبين التوافق في التشوهات في كل من الجدار والإطار البيتوني وهو ما أعطى دليلاً إضافياً على صحة النموذج العددي المستخدم في الدراسة الحالية. وبناء عليه فقد تم قبول نتائج النموذج العددي واعتباره مناسباً لاستكمال الدراسة البارامترية فيما بعد.

الشكل (3-34) التشوهات النسبية الرئيسية عند انتقال 2.5mm للنموذج (Fw,FRP).

الشكل (3-35) مقارنة نتائج الرياضي (Fw,FRP) مع الدراسة التجريبية.
التحليل الإنشائي باستخدام طريقة العناصر المحدودة

1.3.1 ملخص نتائج النموذج العددي (F₀, Fₗ, Fₚ, Fₚ,FRP)

يتبين من خلال الشكل (3-3) والذي يلخص نتائج المراحل الثلاثة من بناء النموذج الرياضي، فعالية أخذ تأثير جدران البلوك لرفع مقاومة الجمل الإطارية في تحمل الأحمال الجانبية في مستويها حيث أدت إضافة الجدار إلى الإطار البيوتيقي المسلح إلى رفع قيمة القص القاعدي للجملة بنسبة 120% في الهزة الموجبة و125% في الهزة السالبة مقارنة مع قيم القص القاعدي للإطار المفرغ دون جدار (F₀). بينما أدت تقوية الجدار بشرائح الـ CFRP (في النموذج Fₚ,FRP) إلى زيادة قيمة القص القاعدي للجملة بنسبة 39% في الهزة الموجبة و29% في الهزة السالبة مقارنة مع قيم القص القاعدي للإطار الممول بجدار (Fₚ). وبالتالي أدى أخذ أثر جدار البلوك المقوى بالـ CFRP (النموذج Fₚ,FRP) للإطار الممول بجدار (Fₚ) إلى زيادة قيمة القص القاعدي للجملة بنسبة 205% في الهزة الموجبة و191% في الهزة السالبة مقارنة مع قيم القص القاعدي للإطار غير الممول بجدار (F₀) وهذا يؤكد مجدداً على فاعلية استخدام الشرائح في رفع كفاءة الجمل الإطارية لمقاومة الأحمال الجانبية في مستويها.

نماذج نتائج النموذج الرياضي (F₀, Fₗ, Fₚ, FRP) (الدراسة الحالية) (Ozkaynak et al., 2011)
10.3 نتائج الفصل الثالث

Chapter 03 Conclusion

تم من خلال هذا الفصل استعراض عملية بناء النموذج العددي باستخدام طريقة العناصر المحدودة، حيث تم في البداية استعراض إمكانيات البرنامج الإنشائي (ABAQUS V6.12-1, 2012)، وإيجاد النماذج البيئية للمواد المشكلة للنموذج من البناء وفولاذ التسليح وجدار البلوك ومن ثم اختيار العناصر المحدودة المناسبة لبناء النموذج العددي الذي يحاكي النموذج التجريبي. بعدها تم توصيف طريقة ربط العناصر المختلفة لتأمين العمل المشترك للجملة ككل، واختيار الشروط المحيطة والتحليل المناسبين. من ثم تم بناء النموذج العددي والتحقق من نتائجه ومدى مطابقتها لنتائج الدراسة التجريبيه.

من خلال عملية مطابقة النتائج تم اعتماد النموذج العددي الذي تم بناؤه في هذا الفصل لإجراء الدراسة البارامترية كما سيرد في الفصل الرابع.
الفصل الرابع

Chapter 04

الدراسة الباراميترية

Parametric Study

1.4

مقدمة

Introduction

يعتبر هذا الفصل الدراسة الباراميترية التي تم تقديمها في هذا البحث، حيث تم البدء بتغيير الخواص الميكانيكية لجدار البلوك لإيجاد مدى تأثيرها على سلوك الاطارات البيوتلية المسلحة تحت تأثير الأحمال الجانبيه في مستويها وكذلك مدى تأثيرها على فعالية تقوية حجارة البلوك بشكل مليري باستخدام شرائح CFRP، لإيجاد الخواص الميكانيكية لجدار البلوك، ثم في البدء إجراء دراسة إحصائية لنظرة كسر عينات من البلوك المحلي ومقارنتها بالقيم الموجودة في المواصفات الأوروبية، من خلال الدراسة الإحصائية تم تجربة قيام مقاومة حجارة البلوك المتعلقة والتي اعتمدت لإجراء الدراسة الباراميترية. ومن ثم في المرحلة الثانية تغير عرض شرائح البلوك CFRP لإيجاد مدى تأثيرها على فعالية التقوية.

الدراسة الإحصائية لنظرة كسر عينات البلوك المحلي

Statistical Study on Testing Results of Local Concrete Blocks

بهدف الاطلاع على نوعية البلوك المحلي ومقاومته المحتملة، تم الاستعانة بقاعدة بيانات مختبر مواد البناء بكلية الهندسة المدنية والذي يعتبر من المخابرات الرئيسية الهامة التي تخدم تخصصات البيتون ومواد البناء في الجمهورية العربية السورية. حيث تم استخدام نتائج الاختبار الخاصة بتجربة عينات البلوك الإسمنتى المفرغ على الضغط (الشكل 1-1) للفرقة الزمنية المعتمدة بين عامي 2011 و2013. وقد بلغ عدد العينات المختبرة خلال الفترة المذكورة (200) من الأبعاد (200x200x200mm، 400x200x150mm، 400x200x100mm) و (400x200x150mm، 400x200x100mm) و (400x200x150mm، 400x200x100mm) وموزعة على مشاريع متنوعة كبيرة ومستوى وصغيرة الحجم، وتعود هذه المشاريع للقطاعين العام والخاص.

كما مر سابقاً في الفقرة (2.2.2)، تم الاعتماد خلال الدراسة الحالية على الطرق المتاحة في المواصفات الأوروبية حيث تم حساب مقاومة وحدات البلوك على الضغط بنقيض الجسم الجانبي الذي تمتجه وحدة (BS EN 771-3، 2003) البلوك المختبرة على سطح الضغط (Loaded Area) التي تحدد تطورها في السطح والقطرة للسطح المعرض للضغط عندما تتجاوز أفضلية الفواreira في سطح الضغط (Net Loaded Surface) أو بالسطح الكامل لوحدة البلوك المختبرة عند عدم تحقيق الشروط السابق.

لاعتماد قيمة مرجعية واحدة للعينات المختلفة بالإعداد تم تحويل مقاومة الضغط لوحدات البلوك المختبرة إلى مقاومة الضغط المكافئة (Normalized compressive strength) والتي تتمحور إلى 100x100x100mm مجففة إلى درجة حرارة الغرفة كما ورد في القرية (2.2). بينما بلغ الانحراف المعياري 10MPa بعد إجراء دراسة إحصائية تبين أن متوسط قيمة الضغط للعينات 10MPa. تمثل درجة حرارة الغرفة والتحويل بينها 10MPa، والتحويل على توزيع متناظر للنتائج حول SD=4.88
الدراسة البارامترية

القيمة الوسطية تم استبعاد العينات التي تقع خارج المجال المحدد بـ ($1.65 \times SD$) وبالمتالية بلغت قيمة المقاومة العظمى على الضغط 17.53 MPa، بينما بلغت القيمة الدنيا للمقاومة على الضغط 2.97 MPa مع الإشارة إلى أن هذه القيم محسوبة على السطح المنطقي للعينات المختبرية، وأن هذه القيم تعبر عن القيم المكافئة لعينات بأبعاد 100x100x100mm. بمراجعة الفئات المتوفرة لتحمل البلوك الإسمنتي على الضغط مقياساً على السطح المنطقي للعينات الواردة في المواصفات الأوربية (McKenzie, 2001)، وجد أن القيم تتراوح بين 4-42 MPa، وبين الشكل (4-3) مقارنة قيم البلوك المحلي مع القيم الواردة في المواصفات الأوربية.

بمراجعة القيم المتوفرة لتحمل البلوك الإسمنتي على الضغط مقياساً على السطح المنطقي للعينات الواردة في المواصفات الأوربية (McKenzie, 2001)، وجد أن القيم تتراوح بين 4-42 MPa، وبين الشكل (4-3) مقارنة قيم البلوك المحلي مع القيم الواردة في المواصفات الأوربية.

بالنسبة للمونة المحلية فقد تم إجراء استعلام عن نسب المواد الداخلة في تركيبها وتبين أن غالبية النسب المستخدمة هي للاسمنت إلى الرمل دون استخدام الكلس، أي بالمقارنة مع التصنيف الأوروبي للأركوم والرمل بالجدول (2-2) يمكن استنتاج أن المونة المحلية تقع ضمن التصنيف الثالث للمونة (iii) وبالتالي فإن مقاومة المونة على الضغط يمكن أن تصل إلى 3.6 MPa، وبناء عليه تم اعتبار مقاومة المونة على الضغط خلال الدراسة الحالية (3.5 MPa).

تم حساب قيمة مقاومة الجدار وفق العلاقة (1-2) باعتبار قيم مقاومة وحدات البلوك المحلي على الضغط تتراوح بين (1.5-16) MPa، واعتبار قيمة مقاومة المونة على الضغط تتراوح بين (4MPa)، القيم الناتجة مبينة في الجدول (4-1).

لاعتماد مقاومة الجدار على الضغط في الدراسة الحالية تم استخدام القيم الواردة أعلاه لكل من مقاومة وحدات البلوك على الضغط محلياً وعالمياً أي ضمن المجال (42-4-42 MPa)، وكذلك قيمة مقاومة المونة على الضغط المعتادة محلياً (3.5 MPa)، ومن القيم المحسوبة تم اعتبار كل من القيم 3.5, 0.7, 0.5, 0.3, 0.17 MPa، والموافقة لمقاومة مونة على الضغط مقدارها 3.6 MPa، لإجراء الدراسة البارامترية.
الدراسة البارامترية

الجدول (4-1) مقاومة الجدار على الضغط (الدراسة الحالية)

<table>
<thead>
<tr>
<th>f_m [MPa]</th>
<th>4</th>
<th>10</th>
<th>18</th>
<th>20</th>
<th>27.5</th>
<th>35</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2.7</td>
<td>5.2</td>
<td>7.8</td>
<td>8.4</td>
<td>10.5</td>
<td>12.5</td>
<td>14.1</td>
</tr>
<tr>
<td>5</td>
<td>1.9</td>
<td>3.7</td>
<td>5.5</td>
<td>5.9</td>
<td>7.4</td>
<td>8.8</td>
<td>10.0</td>
</tr>
<tr>
<td>3.6</td>
<td>1.7</td>
<td>3.3</td>
<td>5.0</td>
<td>5.4</td>
<td>6.7</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>1.5</td>
<td>1.3</td>
<td>2.5</td>
<td>3.8</td>
<td>4.1</td>
<td>5.2</td>
<td>6.1</td>
<td>7.0</td>
</tr>
</tbody>
</table>

الإتحاد الأوروبي

الشكل (4-2) التوزع الطبيعي لنتائج اختبار البلوك المحلي على الضغط f_b للفترة بين 2011 – 2013 (الدراسة الحالية).

الشكل (4-3) التوزع الطبيعي لنتائج اختبار البلوك المحلي على الضغط f_b للفترة بين 2011 – 2013 (الدراسة الحالية).
3.4 نموذج العددي الخاص بالدراسة الباراميترية
Numerical Model of Parametric Study

تم بناء النماذج التي استعملت خلال الدراسة الباراميترية اعتمادًا على النماذج الثلاثة

\((F_0, F_{w}, F_{w, FRP})\)

والتي تم التحقق من صحتها في الفقرة (9.3)، حيث تم اعتماد نفس الأبعاد الهندسية لكل من إطار البيتون المسلح وجدار البلوك وشرائح الـ CFPR مع المحافظة على كمية التسليح الموجودة في المقاطع البيتونية وأبعاد العناصر المحدودة، مع تغيير قيم

المواصفات الميكانيكية للمواد المستخدمة، حيث تم تقسيم العمل إلى ثلاث مراحل:

المرحلة الأولى: تم بناء النموذج العددي للإطار البيتونى المسلح بدون وجود جدار بلوك الاسمنتي (Frame, P-F0) (الشكل 4-4-a)

المرحلة الثانية: تم فيها بناء النموذج العددي للإطار البيتونى المسلح المملوء بجدار بلوك الاسمنتي (Frame, P-Fw) (الشكل 4-4-b)، وتم فيها اعتماد مقاومة الجدار على الضغط متغيرة حسب القيم الخمس الواقعة في الفترة

(2.4)

المرحلة الثالثة: تم شرائح المزروعة في عقد الإطار البيتونى العلوية والسفلية.

تم الدراسة أثر تغيير الخواص الميكانيكية لجدران البلوك

4.4 Effect of Changing the Mechanical Properties Masonry Block

تم باعتماد النماذج المبينة بالفقرة (3.4)، وبتغيير قيم مقاومة الجدار على الضغط حسب القيم الخمس الواردة في

الفقرة (2.4)، إجراء التحليل الإنشائي لنموذج واستنتاج أثر تغيير الخواص الميكانيكية لجدران البلوك على سلوك الجملة في مراحل الثلاث. بين الشكل (4-5) نتائج النموذج (P-F0) والتغييرات المحققة في الأول (P-Fw)

حيث يتم المحاور الأفقية القياسية في مستوي أعلى الإطار البيتونى مقدرة بـ (mm)، بينما يتم المحاور العرضية قيم

القص القاعدي مقدرة بالـ (kN).

المنحنى المرسومة لمجذورات الخلايا البيتريدي الناجية من تطبيق القياسات الدورية عند تحليل النماذج، وبلاط تباين البكاء من أخذ قوى القص الفاعلي عند إضافة الجدار إلى الإطار البيتونى وكذلك أخذ قيمة

القص الفاعلي بزيادة مقدارك الجدار على الضغط نسب مختلفة.
الدراسة الباراميترية

نتائج تحليل النموذج (P-F) والنموذج (P-F,F,FRP) لكل مقاومة الجدار المعتمدة مبينة في الشكل (4-5). حيث يمثل المحور الأفقي الانتقالات في مستوى أعلى الارتفاع البيزوني مقدرة بـ (mm)، بينما يمثل المحور الشاقولي قيم القص القاعدي مقدرة بالـ (kN). المنحنى المرسم تمثل مغلفات الحلقات الهستيرية الناتجة من تطبيق الانتقالات الدورية عند تحليل النماذج، حيث تمثل مقاومة الجدار على الضغط، ويلاحظ منها ازدياد قوى القص القاعدي عند تقوية الجدار وكذلك زيادة قيمة القص القاعدي بزيادة مقاومة الجدار المحوري. ويمكن بمقارنة القيم الناتجة مع الشكل (4-5) ملاحظة زيادة قوة القص القاعدي عند تقوية الجدار لكل قيمة من قيم مقاومة الجدار على الضغط، ما يعكس فعالية الطريقة المستخدمة في التقوية.

يُظهر الشكل (4-6)، العلاقة بين مقاومة الجدار وقيمة القص القاعدي الأعظمي لكل نموذج، حيث يمثل المحور الأفقي مقاومة الجدار على الضغط مقدرة بالـ (MPa)، بينما يمثل المحور الشاقولي القص القاعدي مقدرة بالـ (kN). يلاحظ من خلال الخط المنطقي، والذي يمثل علاقة تغير قيمة القص القاعدي بزيادة مقاومة الجدار على الضغط، ازدياد قيمة القص
الدراسة الباراميترية

القاعدي بزيادة مقاومة الجدار حيث ترسم هذه الزيادة علاقة لا خطية بترتفع نحو الأعلى وبميل خفيف حتى الوصول إلى مقاومة للجدار على الضغط مقدارها 5.0MPa لتزداد بعدها الميل بشكل كبير دالة على زيادة فاعلية الجملة حتى الوصول إلى القيمة العظمى عند مقاومة للجدار على الضغط 9.0MPa. ويحسب قيمة فاعلية الجملة (P/P^o) الممثلة بالخط المنقث على الشكل (4-8)، تجد أن فعالية إضافة جدار البلوك بدأت بـ42% عند مقاومة الجدار 1.7MPa لتزداد بميل خفيف تصل إلى 56% عند مقاومة جدار 5.0MPa ومن ثم يزداد ميل العلاقة بشكل كبير لتصل الفاعلية إلى 119% عند مقاومة جدار 9.0MPa.

بينما يظهر الخط المستمر في الشكل (4-7)، والذي يمثل علاقة تغير قيمة القص القاعدي بتغير مقاومة الجدار المقوى بالـ CFRP، ازدياد قيمة القص القاعدي بزيادة مقاومة الجدار المقوى حيث ترسم هذه الزيادة علاقة لا خطية بترتفع.
 نحو الأسفل بميل يزداد تدريجياً حتى الوصول إلى مقاومة للجدار مقدارها 7.0MPa. ويعتبر هذا الميل طفيف حالياً. على انخفاض فاعلية الجملة حتى الوصول إلى القمة العظمى عند مقاومة للجدار 9.0MPa. وحسب قيمة فاعلية الجملة مقارنة بالجملة دون جدار الممثلة بالخط المستمر في الشكل (4-8)، نجد أن فاعلية إضافة تقوية لجدار البليتوني بدون جدار بدأ بـ 60% عند مقاومة الجدار 7.0MPa لتزداد تدريجياً إلى 155% عند مقاومة جدار 1.7MPa. وبحسب قيمة فاعلية الجملة مقارنة بالجملة بدون جدار ممثلة بالخط المستمر في الشكل (1-7) عند مقاومة جدار البليتوني بدون جدار تصل الفعالية إلى 162% عند مقاومة جدار 9.0MPa.

وبناءً على هذه العلاقة، يمكن القول أنها غير ملائمة بشكل كبير لتصلك الفعالية إلى 162% عند مقاومة جدار 9.0MPa.

ويظهر ذلك في الشكل (4-9)

بملاحظة أن زيادة فاعلية إضافة جدار البليتوني تكون ملحوظة وترتفع بمقدار كبير عند القيم المرتفعة لمقاومة الجدار على الضغط (5-7MPa) بينما زيادة فاعلية تقواية الجدار تكون أقل عند القيم المرتفعة لمقاومة الجدار على الضغط (6-7MPa)، وأن تغير الخطين متعاكيس ما يعني أن فاعلية إضافة شرائح CFRP تتأثر بزيادة مقاومة الجدار، وذلك وكما هو مبين في الشكل (4-9)، ثم حسب فاعلية تقواية الجدار بالشرائح القطرية (P-Fw,FRP) نسبة إلى جملة الإطار المملوء بجدار البلوك (w,F-P).

وتظهر فاعلية التقواية تزداد مع زيادة مقاومة الجدار حتى تبلغ قيمة العظمى 1.7MPa عند 1.7MPa وتستمر بالزيادة بقيمة 13% عن مقاومة الجدار 5.0MPa عند 5.0MPa عند تأثير الانتقالات الدورية في مستوي الإطار (CFRP).

ومن ثم تعود للانخفاض مع زيادة مقاومة الجدار على الضغط. وتشير البيانات إلى أن فاعلية التقواية تزداد بشكل كبير عند القيم المرتفعة لمقاومة الجدار (7-9MPa).

وبالتالي، فإن استخدام شرائح CFRP يعود بالنفع على النظام المعماري، حيث أن استخدام جدران بлок بمقاومات صغيرة (1.7MPa) ستؤدي إلى انهيار الجدار في حالة الإطار المملوء بجدار البلوك (w,F-P) قبل دخول الـ CFRP في العمل بشكل فعال، بينما عند استخدام مقاومات مرتفعة (9.0MPa) فإن توحيد الجدار ستكون أكثر فعالية.

أقام ما علنا في حالة المقاومات المنخفضة، بينما في حالة المقاومات المتوسطة، وانتهى الازدواجية إلى مراحل متأخرة.

وبناءً على ذلك، فإن تأثير الانتقالات الدورية تحت تأثير الاستقلال القطرية في سلوك الجمل الإطارية تحت تأثير الازدواجية القطرية في مساحاتها، وكذلك فإن فاعلية التقواية تكون أمثلة الاستخدام للمقاومات المتوسطة للجدران على الضغط.
5.4 دراسة أثر تغيير عرض شرائح الـ CFRP

Effect of changing the width of CFRP Laminates

تم بناء أربعة نماذج مقواة بشرائح الـ CFRP بشكل قطري كما في الفقرة السابقة (4.4)، اعتمدت مقاومة الجدار 5.0MPa والمقاومة لقاعية القص الأفقية الأصلية، وتم تغيير عرض شرائح النقوية لتكون 200,150,100,50mm كما هو مبين بالشكل (4-10). تناول تحليل نماذج الشكل (4-10) في الشكل (4-11) حيث يمثل المحور الأفقي لمستوي أعلى الإطار البيتوتي مقاوة بـ (mm)، بينما يمثل المحور الشاقولي قيم القص القاعدي مقدرة بالـ (kN). النتائج تحليل نماذج الشكل (4-11) (مبينة في الشكل 1-11) حيث يمثل المحور الأفقي الانتقالات في مستوى أعلى الإطار البيتوتي مقاوة بـ (mm) وتم تغيير عرض شرائح التقوية لتكوين 200,150,100,50mm كما هو مبين بالشكل (4-11)

الشكل (4-10) تغيير عرض شرائح الـ CFRP (الدراسة الحالية).

المرسومة تمثل مغلفات الحلقات الهستيرية الناتجة من تطبيق الانتقالات الدورية عند حل النماذج، ويلاحظ منها ازدياد قوة القص القاعدي بين النموذج (P-Fw) غير المقوى وبين النماذج المقوية، كما يظهر ازدياد قوى القص القاعدي بزيادة عرض الشرائح المستخدمة إلا أن الزيادة كانت طفيفة حتى الوصول إلى عرض الشرائح 150mm ومن ثم ارتفعت قيم الزيادة بشكل ملحوظ عند الوصول إلى عرض الشرائح المماثل لـ 200mm.

بالنظر في المنحنى الممثل ممثلة لمغلفات الحلقات الهстيرية، يمكن استنتاج بعض النقاط المميزه حيث يلاحظ من شكل المنحنى ازداد قصاوة الجملة بشكل مطرد حتى الوصول إلى انتقال جانبي مقداره 2.5mm ومن ثم يقل قصاوة الجملة حسب دقة القص القاعدي وعند الوصول إلى انتقال جانبي مقداره 10mm حيث تعتمد القصاوة ما يقل على تلك القيمة. بحسب التشوهات النسبية الحاضرة في نماذج الشكل (4-10) عند الانتقال (4-12) بين التشوهات النسبية الحقيقية كما ذكر آنفاً حيث يمثل اللون الرمادي الفعال المناطق التي تجاوزت تشوهات الانهيار النسبية للمادة.
الدراسة الباراميترية

الشكل (4-11) نتائج تغيير عرض شرائح الـ CFRP (الدراسة الحالية).

- a. التشوهات النسبية الرئيسة - النموذج $(P-F_w)$
- b. التشوهات النسبية الرئيسية - النموذج $(P-F_{FRP50})$
- c. التشوهات النسبية الرئيسية - النموذج $(P-F_{FRP100})$
- d. التشوهات النسبية الرئيسية - النموذج $(P-F_{FRP150})$
- e. التشوهات النسبية الرئيسية - النموذج $(P-F_{FRP200})$

الشكل (4-12) التشوهات النسبية الرئيسية عند انتقال 2.5mm (الدراسة الحالية).
يبدو في الشكل (4-10) بدء ظهور تشكيل التجاعيد القطرية وهذا ما يفسر التغير في قساوة الجمل عند الانتقال 2.5mm ونقارنة هذا الشكل مع الأشكال (4-10) إلى (4-10) حيث يلاحظ ازدياد عرض المنطقة الفعالة من الجدار بزادت عرض الشرائح ما يؤكّد دور الشرائح في تفاعيل العمل الإطارية لمقاومة الأحمال الجانبية في مستويها، حيث بلغت قيمة القص القاعدي عند انتقال 73kN للنموذج 2.5mm لتم ترتيب هذه القيم على الترتيب، بالرغم تأثير قيّة فاعلية التقوية في المرحلة المبكرة 36,25,13% لنفس الترتيب، بمقارنة هذه القيم مع الأشكال (11-11b-11c-11e) حيث يلاحظ ازدياد عرض المنطقة الفعالة من الجدار بزادت عرض الشرائح ما يؤكد دور الشرائح في رفع كفاءة الجمل الإطارية لمقاومة الأحمال الجانبية، حيث بلغت قيمة القص القاعدي عند انتقال 20,150,100,50mm للشرائح 20,150,100,50mm على الترتيب، حيث يظهر من القيم السابقة أن الفاعلية تبدأ بالازدياد بشكل ملحوظ عند الوصول إلى عرض 150mm

والبحث في فاعلية عملية التقوية حتى أين نهاية التحليل (الشكل 4-11)، تم حساب فاعلية التقوية بالقيمة العظمى (P-Fw,FPR) لكل نموذج من القص القاعدي للنماذج المدرسة (P-Fw,FPR)، حيث يظهر ثبات فاعلية التقوية عند 34% عند زيادة عرض شرائح من 100mm إلى 150mm، ومن ثم ازدادت الفاعلية بشكل طفيف لتصل إلى 45% عند عرض شرائح 200mm، بعدها ازدادت الفاعلية بشكل ملحوظ لتصل إلى 72.1% عند الوصول إلى عرض شرائح 200mm بعدها ازدادت الفاعلية بشكل كبير عند الوصول إلى عرض 300mm.

وبناء على ما سبق تؤكد هذه الدراسة أهمية تغطية زوايا الجدار بشكل كامل وربطها بشكل جيد بزوايا الإطار البيتونى لرفع كفاءة عملية التقوية، حيث أن الانهيار بيدا عند زوايا الجدار وإن تغطيتها يؤدي إلى تأخير هذا الانهيار وتقيل الانهيار النسبي الحاصل بين الجدار والإطار البيتونى ما يزيد من مساهمة الجدار في مقاومة الانتقالات الأفقية المطبقة.

الدراسة البارامترية

(الدراسة الحالية).
نتيجة الفصل الرابع

Chapter 04 Conclusion

في نهاية هذا الفصل يتبع أن تغيير الخواص الميكانيكية لجدران البلوك في رفع كفاءة الإطارات، حيث أدى وجود هذه الجدران إلى رفع قيم القص القاعدي بنسب وصلت إلى 120% عند استخدام جدران بلوك مقامات متوسطة ومرتفعة (9.0-5.0MPa) إلا أن فاعلية إضافة جدران البلوك كانت قليلة عند المقاومات المنخفضة لهذه الجدران البلوك بين (3.5-1.7MPa). ويمكن كذلك أن نخلص إلى أهمية أخذ أثر الخواص الميكانيكية لجدران البلوك عند تقوية هذه الجدران باستخدام شرائح الـ CFRP للحصول على الفاعلية الأمثلية والجودة الاقتصادية من استخدام هذه المادة في عمليات رفع كفاءة الإطارات البيتونية لمقاومة الأحمال الجانبية في مستويها، حيث يبين هذا الفصل أن فاعلية استخدام الـ CFRP تظهر في حال المقاومات المتوسطة لجدار البلوك (5.0MPa). كذلك يمكن التأكيد على دور عرض الشرائح في رفع كفاءة الجملة المدروسة وأهمية تغطية زوايا الجدار بشكل كامل وربطها بشكل محكم مع زوايا الإطار البيتونى. وبالطبع فإن النتائج التي تم التوصل إليها تعطي إجابات للعديد من النقاط التي وردت سابقاً في الفقرة (3.1) وتساهم في إعطاء إضاءة جديدة على عملية استخدام شرائح الـ CFRP في تقوية الجمل الإطارية المملوءة بغدراً تحت تأثير الأحمال الجانبية في مستويها.
الفصل الخامس

Chapter 05

النتائج والتوصيات

Conclusions and Future Works

1.5 مقدمة

Introduction

تم في هذا البحث إجراء دراسة عدوى لدراسة تأثير تغيير الخصائص الميكانيكية لجدار البلوك على الإطارات البيتونية المسلحة المملوءة بجدار البلوك والمقاولة باستخدام شرائح CFRP تحت تأثير الانتقالات الدورية المطابقة في مستوى الإطار (In-plane Cyclic Displacements). تم بناء النموذج العديدي باعتماد طريقة العناصر المحدودة ABAQUS باستخدام برنامج التحليل الإنشائي (FEM). اعتمد نموذج CPD لنمذجة كل من البيتون وجدار البلوك فيما اعتبر سلوك فولاذ التسليح مرنا وشاملة مع إدخال تأثير التماسك (Bond) بين البيتون وفولاذ التسليح كنموذج، اعتبار سلوك شرائح CFRP مرنا خطييا حتى الانهيار مع أخذ تأثير التماسك بين كل من الشرائح وجدار البلوك والبيتون في الحساب. وسيتم فيما يلي استعراض نتائج البحث والعمل المستقبلي الموحي إجراءها.

2.5 النتائج

Conclusions

تم من خلال هذا البحث التوصل إلى النتائج التالية:

1. تتأثر الإطارات البيتونية عند تعرضها للأحمال الجانبية في مستوياتها بوجود الجدران ضمنها، وهذا يساهم في رفع مقاومة هذه الإطارات وتغيير سلوكها على الانهيار، وتتعلق زيادة مقاومة بتغير الخصائص الميكانيكية لجدار البلوك، حيث أدت زيادة مقاومة الجدار من 1.7MPa إلى 9MPa رفع قيم القص القاعدي بنسبة تتراوح بين 40% إلى 120%.

2. تتأثر فعالية استخدام شرائح CFRP بمقاومة الجدار، حيث ازدادت فعالية الإطار البيتونى المملوء بجدار بلوك من 13% إلى 46% عند إضافة شرائح الـ FRP، ولمقاولات للجدار على الضغط من CFRP، وقد أدت الجدران ذات المقامات المتوسطة (5MPa) إلى فعالية أكبر من تلك ذات المقامات الدنيا (1.7MPa) والمرتفعة (9MPa).
يؤثر عرض شرائح الـ CFRP على فعالية التقوية، حيث أنه بزيادة عرض الشرائح من 50mm الموافقة لـ 0.14d (حيث d هو البد النتواني للجدار)، إلى عرض المشترك لـ 0.22d، تزداد فعالية التقوية من 34% إلى 72%.

بين هذا البحث أن عرض شرائح الـ FRP يجب أن يؤخذ بحيث يشمل تغطية زوايا جدار البلوك، حيث أن الانهيار يبدأ في الجدار عند هذه الزوايا وبالتالي فإن تغطيتها تؤدي إلى تأخير انهيار الجدار وبالتالي زيادة في المقاومة.

يعتبر انهيار التماسك بين شرائح الـ FRP وجدار البلوك نمط الانهيار المسيطر على سلوك الإطار البيئوني مع جدار مقوى بـ FRP، من هنا يجب إيلاء عملية تثبيت الشرائح ولعيبا عند زوايا الجدار البناءية الكافية لضمان عمل الجملة والحصول على فعالية أكبر.

الأعمال المستقبلية

Future Works

يوصى بإيلاء النقاط التالية الاهتمام وإدخالها في الأبحاث المستقبلية:

1. استخدام منحنيات تجريبية أكثر تمثيلاً للتصرف الحقيقي للمواد ذات الانهيار الشبيه بالبيتون، حيث أنه تم في هذا البحث استخدام منحنيات نموذجية من الكودات، مما يؤثر على الحلقات الهستيرية للمنشأ وبالتالي على مقدار حساب تبديد الطاقة.

2. تم في الكودات تقدير العرض الفعال لجدار البلوك ضمن الإطار بـ 0.20d (حيث d هو البد النتواني للجدار)، وقد بين هذا البحث أن العرض الفعال للجدار يزداد بوضع شرائح الـ FRP، ويلزم المزيد من الدراسات لتحديد هذا العرض بوجود شرائح الـ FRP بشكل أكثر تفصيلاً.

3. إجراء تحليل ديناميكي باستخدام زلازل شبه حقيقية تبادرات مختلفة زمن استمرار للهزة مختلف وبالتالي تقدير الفعالية من خلال هذه الحركات الأرضية الحقيقية.
References

الكود العربي السوري لتصميم وتنفيذ المنشآت الخرسانية المسلحة - الملحق رقم 2 (2005)."تصميم وتحقيق المباني والمنشآت لمقاومة الزلزال", منشورات نقابة المهندسين، سوريا.

شيخ الأرض رهف، بطيخة مصطفى (2014)."استعمال البوليمرات المسلحة بالألواح الزجاجية في زيادة مقاومة الإطارات البيئية المملوءة بجدران بلوك على الأحجار الجليدية - دراسة عددي", مجلة جامعة أم القرى للهندسة والعمارة، جامعة أم القرى، المملكة العربية السعودية، قبلت للنشر بتاريخ 23-1-2014.
Abstract

Latest earthquakes around the world show the importance of the rehabilitation of existing buildings which have been built before the modern codes of seismic design.

Many researches focused on developing new methods of strengthening the existing buildings to fulfill the requirements of seismic design. The new methods should have both feasibility and easy installation together with the economic use. Recently many researches recommend that masonry walls need to be considered during the rehabilitation process. Other researches go forward to strengthen those walls using new techniques such as fiber reinforced polymer (FRP) laminates.

This research study the effect of the mechanical properties of concrete masonry walls on the behavior of infilled RC frame strengthened with CFRP laminates under in-plane cyclic displacements. Numerical study is performed depending on finite element method (FEM). Nonlinear materially analysis is held in this study using ABAQUS/Standard package. Advanced 2D numerical models were built to simulate the experimental studies. Concrete damaged plasticity (CDP) method is used in modeling both concrete and masonry wall. The bond-slip effect between the concrete and reinforcement bars is undertaken in this study as well as contact properties between the concrete masonry wall and RC frame. On the other hand, the interface properties between wall and CFRP laminates is modeled considering the bond stress - slip effect.

This research shows that the infill wall can change significantly the behavior of the frame with masonry infill wall. It is explored that the mechanical properties of concrete masonry walls can affect the efficiency use of FRP where using wall of medium compressive strength provides more efficient strengthening. Moreover, the width of FRP laminates on the behavior of strengthened infilled RC frames is investigated. It is demonstrated that an FRP width which covers the wall corners offers more strengthening capacity.
"The effect of mechanical properties of masonry wall strengthened by FRP on the in-plane structural behavior of RC frames”

Thesis Submitted in partial fulfillment of the requirements for the degree of Master of Science in structural Engineering

By

Feras Alkam

Supervisor

Dr. Mustafa Batikha

Damascus 2014